• Title/Summary/Keyword: embedded crack

Search Result 144, Processing Time 0.02 seconds

Vibration Analysis of Multi Cracked Nonuniform Nanobeam by using Differential Transformation Method (미분변환법을 이용한 다중 크랙을 갖는 비균일 나노빔의 진동해석)

  • Shin, Young-Jae;Park, Sung-Hyun;Kim, Jin-Hong;Yoo, Yeong-Chan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.93-101
    • /
    • 2016
  • In this study, the governing equations of motion for multi-cracked nonuniform nanobeam based on nonlocal elasticity theory and embedded in an elastic medium were derived. DTM(differential transformation method) was applied to vibration analysis of multi-cracked nonuniform nanobeam based on nonlocal elasticity theory and embedded in an elastic medium. The non-dimensional natural frequencies of this nanobeam were obtained for eoe, crack stiffness and elastic medium stiffness with various boundary conditions. The results obtained by this method was compared with previous works and showed the close agreement between two methods. The important conclusions obtained by this study are as follows : 1. As the length of nanobeam is shorter, the effect of scale coefficient is greater. 2. The locations of crack change non-dimensional natural frequency, In the case of fixed-fixed ends, the non-dimensional natural frequency is the biggest in the first crack location of 0.6L of nanobeam length, and the smallest in both ends. In the case of fixed-free ends, the closer the location of first crack go tho the free end, the bigger the non-dimensional natural frequency. 3. As the stiffness of crack is greater, the non-dimensional natural frequency is smaller, And the effect of crack stiffness is similar on both fixed-free ends and fixed-fixed ends. 4. The bigger the stiffness of elastic medium, the greater the non - dimensional natural frequency.

FATIGUE CRACK GROWTH MONITORING OF CRACKED ALUMINUM PLATE REPAIRED WITH COMPOSITE PATCH USING EMBEDDED OPTICAL FIBER SENSORS (광섬유센서를 이용한 복합재 패치수리된 알루미늄판의 균열관찰)

  • 서대철;이정주;김상훈
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.250-253
    • /
    • 2001
  • Recently, based on the smart structure concept, optical fiber sensors have been increasingly applied to monitor the various engineering and civil structural components. Repairs based on adhesively bonded fiber reinforce composite patches are more structurally efficient and much less damaging to the parent structure than standard repairs based on mechanically fastened metallic patches. As a result of the high reinforcing efficiency of bonded patches fatigue cracks can be successfully repaired. However, when such repairs are applied to primary structures, it is needed to demonstrate that its loss can be immediately detected. This approach is based on the "smart patch" concept in which the patch system monitors its own health. The objective of this study is to evaluate the potentiality of application of transmission-type extrinsic Fabry-Perot optical fiber sensor (TEFPI) to the monitoring of crack growth behavior of composite patch repaired structures. The sensing system of TEFPI and the data reduction principle for the detection of crack detection are presented. Finally, experimental results from the tests of center-cracked-tension aluminum specimens repaired with bonded composite patch is presented and discussed.

  • PDF

Pre-estimate on Structural Behavior and Cracks of Subway Wall Structures Using Gage Measurement (계측에 의한 지하철 박스구조물 벽체부의 균열 밑 구조거동 예측)

  • Kim, Young-Jin;Kim, Sang-Chel
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.657-663
    • /
    • 2006
  • By measuring concrete temperature and strains of concrete and reinforcing bars throughout gages embedded and also by observing the crack occurrence, this study aims at the characteristics of structural behavior of subway wall structure in associate with concrete ages. The length of 23.5m, thickness of 2.0m of real subway custody line was selected as a representative structure and 7 thermocouples and 6 strain gages were installed to measure the behavior of wall structure. The results were compared and verified with analytical results using MIDAS in order to show their usefulness. It was found that only attachment of strain gages on the surface of reinforcing bars can figure out the timing of crack occurrence and hydration heat program is useful to estimate comparatively exact magnitudes of temperature. Since estimated time of crack occurrence throughout thermal stress analysis depends on the period of transferred thermal stress from concrete to reinforcing bars, however, cracks from naked eyes were identified later than analytical results. Cracks were observed first at the center of wall line and then to the end of line symmetrically.

Application of L Integral to Interface Crack Problems (계면균열 문제에 대한 L적분의 응용)

  • 박재학;엄윤용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.34-42
    • /
    • 1986
  • An interface of a circular arc formed by two isotropic, homogeneous elastic materials is investigated. It is shown that L integral satisfies the conservation law for the interface if it is perfectly bonded, in frictionless contact or separated such as in a crack with the origin of the coordinate system being located at the center of the circular arc. The property of path independence of the L integral is applied to an interfacial crack problem, to obtain the stress intensity factors, where the interfacial crack is located along the arc of the circular inclusion embedded in infinite matrix. It is assumed here that the contact zone exist as in the model proposed by Comninou, thus removing the overlapping of the materials along the interface. Another example is shown for case of a circular interfacial crack in the matrix of finite size, where the stress intensity factors are determined by computing a value of the L integral numerically along the path far from the crack tip.

New Fracture Toughness Test Method of Zircaloy-4 Nuclear Fuel Cladding (Zircaloy-4 핵연료 피복관의 신파괴인성 시험법)

  • Oh, Dong-Joon;Ahn, Sang-Bok;Hong, Kwon-Pyo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.823-832
    • /
    • 2003
  • To define the causes of cladding degradation which can take place during the operation of nuclear power plants, it is required to develop the new fracture toughness test of spent fuel cladding. The fracture toughness of Zircaloy-4 cladding was estimated using the recently developed KAERI embedded Charpy (KEC) specimen. Axially notched KEC specimens cut directly from unirradiated fuel claddings, were tested in a way similar to the standard toughness test method of a Single Edge Bending (SEB) specimen. The results of KEC fracture toughness test at room temperatures were discussed and compared with those of the previous other studies. In conclusions, even though the KEC fracture toughness test of nuclear fuel claddings was easier and more reliable than those developed earlier, the results from the cladding fracture tests were not the material characteristics but the specific fracture parameters which were deeply related to the specification of claddings. In addition, the phenomenon of a thickness yielding was not observed from the fracture surface. It was closely related to the fact that the plane strain condition of the KEC specimen was changed to the plane stress condition during crack advancing. It was also supported by the fractographic evidence that the formation of ductile dimples at the crack initiation became the similar appearance such as a quasi-cleavage after the sufficient crack advancing.

Improvement and Evaluation of Seismic Performance of Reinforced Concrete Exterior Beam-Column Joints using Hybrid Retrofitting with AFRP Sheets and Embedded FRP Reinforcements (AFRP 쉬트와 매입형 FRP 보강재를 복합 보강한 R/C 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Yi, Dong Ryul;Kang, Hyun-Wook
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.35-40
    • /
    • 2018
  • In this study, experimental research was carried out to evaluate the seismic performance of reinforced concrete exterior beam-column joint regions using hybrid retrofitting with AFRP sheets and embedded CFRP reinforcements in existing reinforced concrete building. Therefore it was constructed and tested three specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of existing reinforced concrete structure, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and confinement of retrofitting materials during testing. Specimens RBCJ-SRA3 designed by the retrofitting of AFRP sheets and embedded CFRP reinforcements in reinforced exterior beam-column joint regions were increased its maximum load carrying capacity by 1.86 times and its energy dissipation capacity by 1.65 times in comparison with standard specimen RBCJ for a displacement ductility of 5.

Computationally efficient 3D finite element modeling of RC structures

  • Markou, George;Papadrakakis, Manolis
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.443-498
    • /
    • 2013
  • A detailed finite element modeling is presented for the simulation of the nonlinear behavior of reinforced concrete structures which manages to predict the nonlinear behavior of four different experimental setups with computational efficiency, robustness and accuracy. The proposed modeling method uses 8-node hexahedral isoparametric elements for the discretization of concrete. Steel rebars may have any orientation inside the solid concrete elements allowing the simulation of longitudinal as well as transverse reinforcement. Concrete cracking is treated with the smeared crack approach, while steel reinforcement is modeled with the natural beam-column flexibility-based element that takes into consideration shear and bending stiffness. The performance of the proposed modeling is demonstrated by comparing the numerical predictions with existing experimental and numerical results in the literature as well as with those of a commercial code. The results show that the proposed refined simulation predicts accurately the nonlinear inelastic behavior of reinforced concrete structures achieving numerical robustness and computational efficiency.

The Study for Fracture Parameter J in Rubber-Cord Composites with a Penny-Shaped Crack on Cord-End (고무-코드 복합체 코드-끝 균열에 대한 파괴역학적 매개변수 J에 관한 연구)

  • Yang, Kyeong-Jin;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.304-308
    • /
    • 2000
  • In this work, an equation of J-integral for a penny-shaped crack at the end of the cord embedded in rubber matrix is proposed. The dimensional analysis is applied to derived to the equation of J-integral. We assume that the energy Parameter J is separated into the deformation and the geometry function, and which is proved using by separation parameter.

  • PDF

Failure mechanisms in coupled soil-foundation systems

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.7 no.1
    • /
    • pp.27-42
    • /
    • 2018
  • Behavior of soil is usually described with continuum type of failure models such as Mohr-Coulomb or Drucker-Prager model. The main advantage of these models is in a relatively simple and efficient way of predicting the main tendencies and overall behavior of soil in failure analysis of interest for engineering practice. However, the main shortcoming of these models is that they are not able to capture post-peak behavior of soil nor the corresponding failure modes under extreme loading. In this paper we will significantly improve on this state-of-the-art. In particular, we propose the use of a discrete beam lattice model to provide a sharp prediction of inelastic response and failure mechanisms in coupled soil-foundation systems. In the discrete beam lattice model used in this paper, soil is meshed with one-dimensional Timoshenko beam finite elements with embedded strong discontinuities in axial and transverse direction capable of representing crack propagation in mode I and mode II. Mode I relates to crack opening, and mode II relates to crack sliding. To take into account material heterogeneities, we determine fracture limits for each Timoshenko beam with Gaussian random distribution. We compare the results obtained using the discrete beam lattice model against those obtained using the modified three-surface elasto-plastic cap model.

A Study on the Fatigue Strength of the Reinforced Concrete Beams Repaired with Glass Fiber Reinforced Polymer(GFRP) Bar and Glass Fiber Steel Plate(GSP) (GFRP Bar 및 GSP로 보수된 철근 콘크리트 보의 피로강도 연구)

  • Kim, Jae-Young;Kim, Chung-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.191-195
    • /
    • 2009
  • After developing the pre-crack to simulate a damaged reinforced concrete beam, fatigue test was conducted on the beam repaired by GFRP Bar and GSP embedded method. In the result of fatigue test, most residual displacement and crack of the experimental beams occurs in the early loading cycle and an increasing rate of these due to number of cycles were insignificant. Comparing with a non-repaired beam, a static strength of the repaired beam greatly increased, but fatigue strength decreased. In S-N curves, fatigue strength of the beam repaired by GFRP Bar and GSP was 58%, 52% of the static strength respectively.