• Title/Summary/Keyword: embankment on soft ground

Search Result 148, Processing Time 0.029 seconds

Final Settlement Prediction Methods of Embankments on Soft Clay by Back Analysis (역해석에 의한 연약지반 최종침하량 추정)

  • Lim, Seong Hun;Kang, Yea Mook;Lee, Dal Won
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.247-259
    • /
    • 1998
  • Analyses which loads were regarded as instant load and gradual step load were performed with data measured on gradually loaded field, and the results were inspected to find effect of load condition, and final settlements predicted by Hyperbolic, Tan's, Asaoka's, and Monden's method were compared with each other. According to above analyses, the following conclusions were obtained. Settlement curves which loads were regarded as instant load and gradual step load were beginning to coincide at time of twice duration of embankment. On the ground installed vertical drain, the result of Hyperbolic, Tan's, Asaoka's, Monden's, curve fitting I, and curve fitting II (simple, Carrillo) methods make conclude that Asaoka, curve fitting I, and curve fitting II methods agree with measured settlement.

  • PDF

Effect of Electro-Osmosis Method on Marine Clay with Preloading (선행하중이 작용하는 해성점토지반에 전기삼투공법의 효과)

  • Kang, Hongsig;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.2
    • /
    • pp.53-58
    • /
    • 2015
  • The Pre-loading method has been widely used for the soft ground stabilization but long construction times and the transport of large quantities of fill material are required. To shorten the construction periods, the vertical drain method is generally applied simultaneously. But the high costs of the fill materials along with environmental damages remain as the main difficulties to apply this method. Therefore, a complimentary way to reduce both the height of the embankment and the consolidation time is needed. In this study, the electro-osmosis method, which is able to shorten the consolidation time and minimize the damage of the environment, was performed with a model test. The results show that as the voltage increases the consolidation settlements, consolidation drainage and shear strength also increase while the water content decreases.

Case Study of Improvement against Leakage of a Sea Dike under Construction (해안제방 시공 중 해수유입에 대한 차수보강 사례분석)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.95-103
    • /
    • 2015
  • In this study, the causes and countermeasures for the leakage of a sea dyke under construction are analyzed. In general, the seabed ground is clearly divided from the embankment but a lot of parts show abnormal zones with low resistivity from the results of electric resistivity survey. Hence the causes of the leakage are considered as following: three-dimensional shear strain behavior, irregular compulsory replacement of the soft seabed ground with low strength and quality deterioration of the waterproof sheets during the closing process. The improvement method is determined by considering the constructability in the seawater and its velocity condition, durability, economic feasibility, similar application cases and so on. Consequently, a combination of low slump mortar and slurry grouting and injection method is selected as an optimum combination. Mixing ratio and improvement pattern are determined after drilling investigation and pilot test. The improvement boundary is separated into general and intense leakage area. The construction is performed with each pattern and the improvement effects are confirmed. The confirmed effects with various tests after completion show tolerable ranges for all of the established standards. Finally, various issues such as prediction of length of the waterproof sheet, installation of it against seawater velocity, etc. should be considered when sea dykes are designed or executed around the western sea which has high tide difference.

Estimation of Earth Pressures Acting on Box Structures Buried in Ground (지중에 매설된 박스구조물에 작용하는 토압 산정)

  • Hong, Won-Pyo;Yun, Jung-Mann;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.23-33
    • /
    • 2015
  • The earth pressure acting on underground structure was measured by application of the instrumentation system in the subway construction site constructed by the method of cut-and-cover tunnel. The measured earth pressure was compared with the earth pressure obtained from the existed theoretical equation, and the actual earth pressure diagram acting on the underground structure was investigated. As a result of investigation, the vertical earth pressure is mainly affected by the embankment height, and the lateral earth pressure is significantly affected by whether the existence of earth retaining structures or not. The measured vertical earth pressure is very similar to the theoretical earth pressure proposed by Bierbaumer. The measured lateral earth pressure is closed to the active earth pressure proposed by Rankine rather than the earth pressure at rest. The coefficient of earth pressure in soil deposit layer is about 0.35, and the coefficient in soft rock deposit layer is about 0.21. For design and construction the underground structures, therefore, it is reasonable estimation that the lateral earth pressure acting on structures installed in soil deposit layers is an average value between active earth pressure and earth pressure at rest. In rock deposit layers, the lateral earth pressure acting on structure is an active earth pressure only.

Unconfined Compressive Strength of Reduced Slag-Mixed Clay (환원슬래그 혼합점토의 일축압축강도 특성)

  • Cho, Minjae;Yoon, Yeowon;Kim, Jaeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.33-39
    • /
    • 2012
  • With the increase of steel production research interest on the recycling of slag as a by-product also increases steadily. Currently in Korea a lot of researches on blast-furnace slag have been made. However, the researches on the steel slag have been rarely made. Also, a research of steel slag, especially the use of oxidation furnace slag as aggregates for concrete progress, is performing actively, but the research results on the furnace slag are almost nothing. Recently, the research about the furnace slag as backfill material and embankment material confirmed the possibility of the clay soil amendment. Therefore, the object of this study is to review the possibility as civil engineering materials for soil improvement and to find the optimum mixture ratio of furnace slag. This research analyzed the ingredient component of the reduced slag by SEM, XRF, XRD tests and examined the strength increase using unconfined compression tests when the clay and reduced slag are mixed each other. Through this test, the definite strength increase is confirmed according to the mixture of the reduced slag and the possibility of soil improvement is also confirmed based on this result. The object of the study is both utilizing the by-product for civil engineering purpose and effective recycling by the application of the furnace slag for soil improvement.

Compressive Strength Characteristics of Light-weight Air Foamed Soil Using Dredged Silty Soils (준설 실트질 점토를 이용한 경량기포혼합토의 압축강도 특성)

  • Kim, Donggyu;Yoon, Yeowon;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.27-33
    • /
    • 2017
  • In this research, laboratory tests were carried out to investigate the engineering properties of Light-Weight Air Foamed Soil (LWAS) based on silty clays with the animal foaming agent and cement. LWAS has been used as an embankment material over soft ground for road and side extension of the existing road. In field, unit weight and flow value is measured right after producing in mixing plant in order to control the quality of LWAS, and laboratory tests are carried out to confirm the quality through compressive strength of LWAS as well. In this research, direct estimation of the specification requirement of strength using flow values in field is the main purpose of the study together with other characteristics. From the test results, it can be seen that flow values increase with the initial water content and unit weight increases with the depth due to material segregation. Compared to the upper specimen, lower end of 60 cm specimen shows about 2 times higher compressive strength. Relationship between flow values and normalized factor presented by Yoon & Kim (2004) was presented. With that relationship, compressive strength can be predicted from flow values in field. From the relationship, the normalized factor was calculated. Thereafter calculated compressive strengths according to the flow values were compared to measured strengths in the laboratory. The higher the initial water content of the dredged soil has, the better relationship between predicted and measured shows. Therefore it is necessary to predict the compressive strength in advance through the relationship between the flow value and the normalized factor to reflect it in the design stage.

Seepage Characteristics of Embedded Rock Layer Under the Earth Fill (성토제 하부에 매설된 사석층의 침투특성)

  • Lee Haeng-Woo;Chang Pyoung-Wuck
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.63-72
    • /
    • 2005
  • Rocks are dumped to soft marine ground in order to improve trafficability and construction conditions in the tideland reclamation construction sites. Though this rock layer under earth fill has caused in a serious seepage problems after construction, seepage behaviors of this embankment structure is not correctly investigated. Water flow through rock layers is, in general, known as Non-Darcy's flow. However, the embedded rock layer under earth fill is not known whether its flow is governed by Darcy's or Non-Darcy's law. Therefore, a numerical analysis, laboratory model test and filed investigations were performed for analyzing the those seepage characteristics in this research. Results show that there is significance of $95\%$ of confidence between observed heads and seepage rates, and the calculated ones by SAMTLE which is developed under the assumption that the water flows through the two-layer system obey the Darcy's flow. And after operating the hydraulic gradient(i) of $0.10\~0.55$ upon laboratory model, these seepage characteristics of the embedded rock layer show that Reynolds Numbers are less than 10 and the relationship between these velocities of rock layer(v) and hydraulic gradients(i) is linearly proportional with more than 0.79 of the coefficient of correlation $(R^2)$. And the Reynolds Number of the velocity calculated by the relation of v=ki in the embedded rock layer of OO sea dike is $1\~6$. It shows also laminar flow. Based on these results, it is concluded that the seepage characteristics of embedded rock layer under earth fill can be laminar and Darcy's flow.

The Numerical Study on Individual Vacuum Seepage Consolidation Method with Flexible Well Point (연성 Well Point를 적용한 개별진공 침투압밀공법에 관한 해석적 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Young-Seon;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • In this study, the individual vacuum seepage consolidation method, a new soft ground improvement method, was developed to supplement the conventional suction drain method (individual vacuum preloading method) and the geotechnical behavior was predicted through numerical analysis. If the individual vacuum seepage consolidation method applied, the effect of accelerating settlement and increasing the amount of settlement was high when the aquifer was located in the middle or at the bottom of the layer to the target improvement layer. It was found that the pumping amount in the aquifer does not affect the settlement behavior when it exceeds a certain level. Even vacuum pumping wells were installed in various locations, such as inside or outside of the embankment, the difference in settlement and horizontal displacement was insignificant. In addition, it was predicted that the settlement rate was the fastest and the horizontal displacement (inward) was large when both methods were carried out at the same time. Since this method can reach the target settlement amount very quickly, it was confirmed that it is possible to increase the spacing of vertical drain, thereby securing economic feasibility.