• Title/Summary/Keyword: elongation properties

Search Result 1,486, Processing Time 0.025 seconds

Physical Properties of Green Sheets According to Glass Transition Temperature of Binder (바인더 유리전이온도에 따른 그린시트의 물리적 특성)

  • Kwon, Hyeok-Jung;Yeo, Dong-Hun;Shin, Hyo-Soon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.33-37
    • /
    • 2013
  • The properties of LTCC green sheets formed by the MLS-22 powder of NEG Inc. were investigated for acrylic binders with different PVB and Tg in the variation of temperature. The elongation of the green sheets showed large variation depending on the temperature, and was rapidly decreased near the Tg of the sheets. With the increase of the ratio of plasticizer/binder (P/B), large elongation of the sheets was observed due to the decrease of the Tg. In the stacking process of the multilayer ceramic, the optimal control of the temperature is highly required depending on the Tg of the binder and the ratio of P/Buniform coating.

A STUDY ON THE BIOMECHANICAL PROPERTIES OF ORTHODONTIC RUBBER ELASTIC MATERIALS (교정용 고무탄성재료의 생역학적 성질에 관한 연구)

  • Song, Hyun-Sup;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.21 no.3
    • /
    • pp.563-580
    • /
    • 1991
  • The purpose of this study was to investigate and compare the biomechanical properties of orthodontic rubber elastic materials. Latex bands, nylon-covered elastic threads and polyurethane-based elastic modules, delivering $205{\pm}10$ grams force at 30mm stretching state were selected and stored separately in 3 environments-air ($22{\pm}3^{\circ}C$), distilled water ($37{\pm}1^{\circ}C$), or natural saliva ($37{\pm}1^{\circ}C$). And, the amount of remaining force and permanent elongation of each sample were measured on Instron at interval of 1 hour, 6 hours, 12 hours, 24 hours, 1 week, and 2 weeks. So the data derived were analyzed statistically. The results were as follows: 1. Force decay and permanent elongation of all materials increased with time lapsed; elastic module, latex band and nylon-covered elastic thread in that order of the amount of force decay; elastic module, elastic thread, latex band in that order of the amount of permanent elongation. 2. Among environmental conditions, force decay and permanent elongation in natural saliva, most increased, and those in air, least increased. 3. There was a negative correlation between force decay and permanent elongation. 4. Force decay and permanent elongation were most affected by the material itself, time and environments in that order. 5. After 24 hours in saliva, the percentage of remaining force in elastic module was 51.9% (107.37grams); in latex band, 83.2%(172.62grams); in elastic thread, 85.0%(179.25grams). After 2 weeks in saliva, the percentage of remaining force in elastic module was 42.9%(88.75grams); in latex band, 74.5%(154.50grams); in elastic thread, 77.6%(163.75grams).

  • PDF

A Study on the Mechanical Properties of Composite Materials of Polyurethane Resin and CuO (PUR/CuO 복합재료의 기계적 특성 연구)

  • Kim, Eun-Bong;Koo, Su-Jin;Jeong, Sang-Gu;Kim, Seok-Hyeon
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.106-114
    • /
    • 2014
  • For the purpose of development of polyurethane sealing material, polyurethane resins reinforced with CuO were prepared from polyol and MOAC(4,4'-Methylenebis(2-chlorobenzeneamine)). And the effects of compositions on the mechanical properties of the reinforced polyurethane resin were experimentally examined. The polyurethane resin got to be thermally decomposed at $260^{\circ}C$ and completely carbonized around $500^{\circ}C$. Tensile strength, elongation and hardness of the polyurethane resin increased with the content of MOCA. CuO was uniformly dispersed in the polyurethane resin by 1 minute's ultrasonic radiation. Tensile strength, elongation and hardness of the polyurethane resin reinforced with CuO increased with the content of CuO. Tensile strength and hardness of the reinforced polyurethane resin increased with particle size of the CuO, but elongation decreased. CuO showed higher tensile strength and hardness than any other additives, and lowest elongation.

Properties of WPC Prepared with Various Size and Amount of Wood Particle (목편의 크기와 함량이 복합재료의 물성에 미치는 영향)

  • Kim, Chul-Hyun;Kim, Kang-Jae;Eom, Tae-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.40 no.3
    • /
    • pp.59-64
    • /
    • 2008
  • The mechanical properties of WPC(wood plastic composite) should effected with the size of wood particle size and also characteristics of wood particles. In this paper, WPC were prepared with various size of wood particles and coupling agent and the mechanical properties were evaluated. The smaller size of wood particle were used for WPC, the higher properties of WPC in tensile strength and breaking elongation were obtained. The smaller amount of wood particle were used for WPC, the higher properties of WPC in tensile strength and breaking elongation were obtained.

A Study on the Physical Properties of Sappan Wood Dyeing Fabrics Treated by Rice Straw Ash Solution (잿물로 매염처리된 소방염포의 물성에 관한 연구)

  • 주영주
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.6
    • /
    • pp.609-609
    • /
    • 1998
  • This paper surveys the effect of rice straw ash solution to the physical properties of Sappan Wood dyeing fabrics. In the quantitative analysis of rice straw ash solution, the quantities of absorbed ingredients in fabrics were increased by bath pull treatment but the amount of absorption(K/S value) was increased by bath pH4.5 treatment. This is related to the metal ion. Among the metal ion, effect of Fe iou and Al ion were related. In case added extracted dye solution to mordants, the color dye solution became dark and increased reddish. The changes of mechanical properties of fabrics tensile resilience, bending rigidity(B), compressional resilience(RC) were increased. Generally mechanical properties were increased by rice straw ash solution treatment, specially bath pH9 treatment. Rice straw ash solution treatment of dyeing fabrics made the improvement in tensile strength and elongation and in the amount of absorption, dye ability, color fastness, mechanical properties, tensile strength, elongation.

A Study on the Physical Properties of Sappan Wood Dyeing Fabrics Treated by Rice Straw Ash Solution (잿물로 매염처리된 소방염포의 물성에 관한 연구)

  • 주영주
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.6
    • /
    • pp.699-705
    • /
    • 1998
  • This paper surveys the effect of rice straw ash solution to the physical properties of Sappan Wood dyeing fabrics. In the quantitative analysis of rice straw ash solution, the quantities of absorbed ingredients in fabrics were increased by bath pull treatment but the amount of absorption(K/S value) was increased by bath pH4.5 treatment. This is related to the metal ion. Among the metal ion, effect of Fe iou and Al ion were related. In case added extracted dye solution to mordants, the color dye solution became dark and increased reddish. The changes of mechanical properties of fabrics tensile resilience, bending rigidity(B), compressional resilience(RC) were increased. Generally mechanical properties were increased by rice straw ash solution treatment, specially bath pH9 treatment. Rice straw ash solution treatment of dyeing fabrics made the improvement in tensile strength and elongation and in the amount of absorption, dye ability, color fastness, mechanical properties, tensile strength, elongation.

  • PDF

Relationship between RVA Properties and Film Physical Properties of Native Corn Starch and Hydroxypropylated Corn Starch (천연옥수수전분과 hydroxypropyl화 옥수수전분의 RVA특성과 필름 물성의 관계)

  • Han, Youn-Jeong;Kim, Suk-Shin
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1023-1029
    • /
    • 2002
  • Relationship between RVA properties and physical properties of film made from native corn starch and hydroxypropylated corn starch at various levels of plasticizers was examinel. Tensile strength of the film decreased, but its elongation and water vapor permeability increased with increasing plasticizer concentration. The film with glycerol showed greater changes in physical properties than that with sorbitol. Hydroxypropylated starch film showed lower tensile strength, higher elongation, and higher water vapor permeability than the native starch film. Sorbitol resulted in films with relatively high tensile strength, whereas glycerol produced films with increased elongation. The most reliable parameters for the relationship between RVA properties and film properties were RVA peak viscosity, tensile strength, and water vapor permeability. Water vapor permeability and tensile strength had linear relationship with RVA properties. The tensile strength and water vapor permeability of film could be predicted using the RVA peak viscosity.

Effects of heat setting temperature conditions on the mechanical properties of Polybutylene succinate (PBS) monofilament yarn after net-making (편망 후 열처리 온도가 PBS 모노필라멘트사의 물리적 특성에 미치는 영향)

  • Park, Seong-Wook;Kim, Seong-Hun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.1
    • /
    • pp.20-28
    • /
    • 2012
  • The monofilament with 0.304mm of diameter was produced using a polybutylene succinate (PBS) resin, and a gill net was made by it. We investigated the impact of heat setting temperature on the mechanical properties, knot state and height of gill net. Heat treatment was carried out using the high pressure steam machine for 20 minutes at temperature of $55^{\circ}C$, $60^{\circ}C$, $70^{\circ}C$ and $75^{\circ}C$. Before heat treatment, the strength and elongation of PBS monofilament were estimated to be $48.1kg/mm^2$, 23.8% at unknot, $37.6kg/mm^2$, 18.8% at single knot, $26.6kg/mm^2$, 22.9% at double knot in dry condition, respectively. The strength and elongation of PBS monofilament with double knot were decreased as heat setting temperature increased, and the decreasing rate of strength was showed to be higher than that of elongation. It was not found any differences in strength and elongation of PBS monofilament yarn with double knot at the $65^{\circ}C$ and $70^{\circ}C$ of heat setting temperature by 5% significance of T-test, but there was a significant difference at the $70^{\circ}C$ and $75^{\circ}C$ of heat setting temperature. The net's height and length from leg to leg appeared no differences at the $70^{\circ}C$ and $75^{\circ}C$ of heat setting temperature. In results, it was investigated that the PBS monofilament gill net with the maximized physical properties could be manufactured at $70^{\circ}C$ of heat setting temperature using a high pressure steam machine for 20 minutes.

The Effect of Acid Chemicals on the Physical Properties of Raw Silk (산성화학약제의 처리가 생사의 물리적 성질에 미치는 영향)

  • Rhee, In Jeon;Rosario, Chailunga
    • Current Research on Agriculture and Life Sciences
    • /
    • v.7
    • /
    • pp.73-81
    • /
    • 1989
  • This experiment was carried out to determine the effect of acid chemicals namely, sulphuric acid, formic acid and acetic acid on the physical properties of silk especially on tenacity and elongation which are the two most important properties in handling and processing of silk. The following results were observed. It was recognised that there was a significant change in elongation in all the samples tested using the three different chemicals. In the test with acetic acid, the elongation at $40^{\circ}C$ at pH 3 had a significant change. Change was observed in the test with sulphuric acid at $40^{\circ}C$ pH 3 and in the case of formic acid test, there was a significant change in the elongation of raw silk at $80^{\circ}C$. The above results qualifies earlier findings and studies that recorded that acids like formic acid and other organic acids could have an effect on the physical properties of silk.

  • PDF

A Study on Elongation/Contraction Behavior and Mechanical Properties of Oxy-Polyacrylonitrile(PAN) Fiber in Basic/Acidic Solution for Artificial Muscle Applications (산화된 폴리아크릴로니트릴 섬유의 인공근육 응용을 위한 염기/산 용액에서의 신장/수축 거동과 기계적 특성 연구)

  • 이영관;김상완;이경섭;조인희;이주화
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.468-476
    • /
    • 2002
  • Oxy-PAN fiber prepared from the preoxidation and saponification of raw PAN fiber is known to elongate and contract when immersed in basic and acidic solutions, respectively. In this study, about 30% elongation in NaOH solution and 30∼50% contraction in HCl solution have been observed. In mechanical test, the mechanical properties of oxy-PAN fiber in the contracted state was stronger than that in the elongated state. These behaviors and mechanical properties are compared to those of living muscle and linear actuator. The change of length in NaOH and HCl solutions is due to switching between a hydrophilic and a hydrophobic structure. Other reasons are exchange of ion and water in/out of oxy-PAN fiber, and osmotic pressure difference associated with relevant ions. Much studies are needed to clarify the effective factors on but the oxy-PAN fiber's elongation/contraction behavior and mechanical properties, but the oxy-PAN fiber perpared in our laboratory has a sufficient potential for application as artificial muscle and linear actuator.