• Title/Summary/Keyword: elliptic mild slope equation

Search Result 16, Processing Time 0.023 seconds

Wave Deformation Model in Orthogonal Curvilinear Coordinate System around the Coastal Structure (파향선 좌표계에 의한 해암구조물 주변에서의 파랑변형 모형)

  • 이동수;이종섭;장선덕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.22-30
    • /
    • 1989
  • Wave propagation is changed by the effect of shoaling, current-depth refraction and shelter-ing etc. To solve these problems. numerous models have been developed. In the present study, a coordinate system is proposed based on the wave ray equation with the wave number equation including diffraction effects . The governing equation for the study was derived from the mild slope wave equation in non-steady state, including current effects (Kirby, 1986a) and trans-formed into an orthogonal curvilinear coordinate system on the basis of the wave ray equation. To obtain a numerical solution, an explicit finite difference scheme was used, and solved by the relaxation method. This model was tested for various cases: Firstly a submersed circular shoal and a constant unit depth. Secondly a submerged elliptic shoal on a slope, and finally a breakwater harbour with obliquely incident waves on a slope. The model was found to simulate the experimental results and other theoretical results in wave height and wave angle fairy well, and the applicability of the model around an arbitrary shaped coastal structure was also verified. To demonstrate the general usefullness of the present approach , the model is to be applied to a field situation with a complex bed topography.

  • PDF

Comparison of PCGM and Parabolic Approximation Numerical Models for an Elliptic Shoal (타원형천퇴에 대한 PCGM과 포물형근사식 수치모형비교)

  • 서승남;연영진
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.3
    • /
    • pp.216-225
    • /
    • 1994
  • By use of laboratory experiment data set for an elliptic shoal by Berkhoff et al. (1982), both accuracy and Performance tests of numerical results between PCGM (Preconditioned Conjugate Gradient Method) and PA(Parabolic Approximation) are compared. Although both results show good agreement with the experimental data the PA model gives better reproduction of the relatively high amplitudes in the section 4-5 downwave of the shoal, in comparison with the PCGM. The PA model has been proved to be a useful tool for predicting wave transformationsin large shallow water region, but it can be applied only to the case of negligible reflection. On the other hand, there is a need to improve the computational efficiency of the PCGM model which is a finite difference scheme directly derived from the mild slope equation and can handle reflection. By taking the results of th PA model as an input data of the PCGM, the CPU time can be reduced by about 40%.

  • PDF

A Study on the Numerical Model for Predicting Shoreline Changes (해안선 변형 예측에 대한 수치모델 연구)

  • 박정철;한건모;김재중
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.156-161
    • /
    • 1993
  • Structures built in the coastal area often cause unexpectedly severe shoreline change on the adjacent beaches. Therefore, beach evolution is one of the most important problem in the coastal engineering. Beach evolution in the coastal area consisted of wave transform model and sediment transport model. Ebersoale's elliptic mild slope equation which considered the effect of combind wave refraction and perline and Dean's one line theory for the sediment transport model were used in this study. Kwangan beach was selected as study area and field observations were done. Numerical simulation for beach evolution in the Kwangan beach was performed and shoreline change predictions were suggested as results.

  • PDF

A Parabolic Approximation Model for Wave Deformation Combined Refraction, Diffraction, and Breaking (파랑(波浪)의 굴절(屈折), 회절(回折) 및 쇄파변형(碎波變形)에 관한 포물형근사모형(抛物形近似模型))

  • Lee, Dong Soo;Lee, Jong Sup;Park, II Heum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.619-633
    • /
    • 1994
  • A wave deformation model for general purpose combined refraction, diffraction, and breaking is developed in the shallow water. A parabolic approximation equation considered a higher order diffraction term is derived from the previous mild slope equation. A wave energy dissipation term due to bottom friction and breaking is introduced from the turbulence model. The Crank-Nicoloson implicit scheme is used in the numerical calculation, then the solutions are compared with the various hydraulic experiment data in the circular, the elliptic shoal, and the surf zone. The wave height decay in the surf zone is sensitively affected by the incident wave steepness, and the wave height variation around the elliptic shoal is well explained by the non-linear dispersion relation and the wave energy dissipation term. The model is also applied to a field coastal area and reasonable results are obtained.

  • PDF

Wave Transformation Due to Energy Dissipation Region (에너지 감쇠영역으로 인한 파랑변형)

  • 윤종태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.3
    • /
    • pp.135-140
    • /
    • 1999
  • To simulate the wave transformation by an energy dissipation region, a numerical model is suggested by discretizing the elliptic mild-slope equation. Generalized conjugate gradient method is used as solution algorithm to apply parabolic approximation to open boundary condition. To demonstrate the applicabil-ity of the numerical procedure suggested, the wave scattering by a circular damping region is examined. The feature of reflection in front of the damping region is captured clearly by the numerical solution. The effect of the size of dissipation coefficient is examined for a rectangular damping region. The recovery of wave height by diffraction occurs very slowly with distance behind the damping region.

  • PDF

Effectiveness of Wave Resonator for Secondary Undulation under Real Sea Conditions (실해역에서 공진장치를 이용한 부진동의 제어)

  • Jeong, Jin-Woo;Kim, Do-Sam;Park, Jong-Bae;An, Sung-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.51-60
    • /
    • 2010
  • In this study, the performance evaluation of a conventional wave resonator at the entrance of a port or a pier against secondary undulation has been performed using 2D hydrodynamic modeling within port. A wave resonator has been designed for the attenuation of the secondary undulation induced by the long-periodic waves. The controlled performance of the wave resonator has been numerically investigated for CGWAVE MODULE of finite-element model of SMS (Surface water Modeling System) based on the elliptic mild-slope wave equation. SMS was verified though the comparisons with analytical solution performed by Ippen and Goda (1963). Also, It was confirmed that a wave resonator of a rectangular model harbor is effective enough to control the secondary undulation when it compares variation of water level with the case of no resonance system. From the above results, amplification phenomenon induced by long-period waves transferred from 1900 sec to 2100 sec when it applied a wave resonator in Busan Gamcheon Port which is a deep-sea. And it was confirmed that a wave resonator of Pohang New Port attenuates largely long-period waves which are within the range of 300 sec induced by long-period motion of the moored ship.