• Title/Summary/Keyword: elite selection

Search Result 61, Processing Time 0.034 seconds

Distribution of the Genetic Resource and the Biomass of Root Bark of Ulmaceae Species

  • Park, Dong Jin;Yong, Seong Hyeon;Yang, Woo Hyeong;Seol, Yuwon;Choi, Eunji;Kim, Hyeong Ho;Ahn, Mi-Jeong;Choi, Myung Suk
    • Journal of agriculture & life science
    • /
    • v.53 no.2
    • /
    • pp.65-75
    • /
    • 2019
  • Stem and root of elm trees have used as traditional medical materials, but there is little information on the distribution and resources of habitats. Korean native growing Ulmus spp. (U. davidiana var. Japonica, U. parvifolia, U. davidiana, and U. macrocarpa) genetic resources studied through The National Forest Inventory of Korea data and field survey. The distributions of U. davidiana var. japonica according to elevation distributed evenly. Both U. parvifolia and U. davidiana were inhabited mostly at less than 200 m of altitude. Each Ulmaceae species widely were distributed nationwide, but a dominant species was different depending on locals. It observed that Ulmaceae inhabits mainly in steep slopes of 31-45 degrees. Most of the habitats regenerated by natural seeding and the most abundant species were a codominant tree. Distribution of trees in U davidiana var. japonica was 7 m-13 m, and in young U. parvifolia and U. macrocarpa, more than 25% of young trees less than 7 m observed. The distribution of the diameter of breast height of the U. davidiana var. japonica was 46.4% for 11-20 cm, 52.6% for 11-20 cm in U. parvifolia. The average T/R ratio was 0.83, and the mean weight ratio of root bark was 62%. As the results of this study, the domestic Ulmaceae biomassare very small. It is difficult to harvest in that the habitat on the slope. Thus, it is too hard to develop functional materials using biomass at present. Therefore, it is necessary to develop technology for the selection and propagation of elite trees of Ulmaceae.

Multi-environment Trial Analysis for Yield-related Traits of Early Maturing Korean Rice Cultivars

  • Seung Young Lee;Hyun-Sook Lee;Chang-Min Lee;Su-Kyung Ha;Youngjun Mo;Ji-Ung Jeung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.252-252
    • /
    • 2022
  • Genotype-by-environment interaction (GEI) refers to the comparative response of genotypes to different environments conditions. Thus, understanding GEI is a fundamental component for selecting superior genotypes for breeding programs. The significance of utilizing early maturing cultivars not only provides flexibility in planting dates, but also serves as an effective strategy to reduce methane emission from the paddy fields. In this study, we conducted multi-environment trials (METs) to evaluate yield-related traits such as culm length, panicle length, panicle number, spikelet per plant, and thousand grain weight. A total of eighty-one Korean commercial rice cultivars categorized as early maturing cultivars, were cultivated in three regions, two planting seasons for two years. The genotype main effect plus genotype-by-environment interaction (GGE) biplot analysis of yield-related traits and grain yield explained 70.02-91.24% of genotype plus GEI variation, and exhibited various patterns of mega-environment delineation, discriminating ability, representativeness, and genotype rankings across the planting seasons and environments. Moreover, simultaneous selection using weighted average of absolute scores from the singular value decomposition (WAASB) and multi-trait stability index (MTSI) revealed six highly recommended genotypes with high stability and crop productivity. The winning genotypes under specific environment can be utilized as useful genetic materials to develop regional specialty cultivars, and recommended genotypes can be used as elite climate-resilient parents to improve yield-potential and reduce methane emission as part to accomplish carbon-neutrality.

  • PDF

Sex ratio and conception rates of fresh/vitrified embryos at different developmental stages by ovum pick up in Hanwoo cows

  • Jihyun Park;Seonggyu Bang;Wonyou Lee;Kilyoung Song;Miyun Park;Junseo Chung;Islam M. Saadeldin;Sanghoon Lee;Junkoo Yi;Jongki Cho
    • Journal of Animal Science and Technology
    • /
    • v.66 no.5
    • /
    • pp.920-935
    • /
    • 2024
  • Embryo transfer plays a crucial role in enhancing the breeding value of livestock; it has been applied in Hanwoo cattle, which is a popular breed for beef production in Korea. Both in vivo-derived (IVD) and in vitro-produced (IVP) embryos are used for this purpose; however, IVP embryos have been preferred recently owing to advancements in ovum pick-up (OPU) technology and genomic selection. Despite technological advancements, comprehensive data on large-scale OPU/IVEP/embryo transfer in Hanwoo cows are lacking. In this study, 16 elite Hanwoo donor cows were selected on the basis of specific criteria. Oocytes were retrieved from 241 cows using OPU. The collected cumulus-oocyte complexes (COCs) were matured, fertilized, and cultured in vitro to produce transferable embryos. Embryos were classified according to their developmental stage and then transferred to 675 recipient cows. A total of 3,317 COCs were collected, with an average of 13.76 COCs per cow. The number of transferable embryos produced per cow was 3.7. Hanwoo OPU-derived IVP embryos exhibited a higher production yield than the global average, indicating a stable IVEP environment. Both fresh and frozen IVP embryos yielded similar conception rates; hence, the use of vitrified-thawed embryos in transfer plans feasible. However, frozen-thawed embryos at Stage 7 had a lower conception rate than those at earlier stages. There was no significant difference between the conception rates of sexually mature heifers and postpartum cows used as recipients. The male-to-female offspring ratio increased as the developmental stage progressed. Seasonal effects on conception rates were not observed; however, higher abortion rates and a higher proportion of male offspring were observed during winter. This study provides valuable data for the Korean embryo transfer industry, enabling more strategic growth of the domestic Hanwoo embryo industry.

Recurrent parent genome (RPG) recovery analysis in a marker-assisted backcross breeding based on the genotyping-by-sequencing in tomato (Solanum lycopersicum L.) (토마토 MABC 육종에서 GBS(genotyping-by-sequencing)에 의한 RPG(recurrent parent genome) 회복률 분석)

  • Kim, Jong Hee;Jung, Yu Jin;Seo, Hoon Kyo;Kim, Myong-Kwon;Nou, Ill-Sup;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.165-171
    • /
    • 2019
  • Marker-assisted backcrossing (MABC) is useful for selecting an offspring with a highly recovered genetic background for a recurrent parent at early generation to various crops. Moreover, marker-assisted backcrossing (MABC) along with marker-assisted selection (MAS) contributes immensely to overcome the main limitation of the conventional breeding and it accelerates recurrent parent genome (RPG) recovery. In this study, we were employed to incorporate rin gene(s) from the donor parent T13-1084, into the genetic background of HK13-1151, a popular high-yielding tomato elite inbred line that is a pink color fruit, in order to develop a rin HK13-1084 improved line. The recurrent parent genome recovery was analyzed in early generations of backcrossing using SNP markers obtained from genotyping-by-sequencing analysis. From the $BC_1F_1$ and $BC_2F_1$ plants, 3,086 and 4868 polymorphic SNP markers were obtained via GBS analysis, respectively. These markers were present in all twelve chromosomes. The background analysis revealed that the extent of RPG recovery ranged from 56.7% to 84.5% and from 87.8% to 97.8% in $BC_1F_1$ and $BC_2F_1$ generations, respectively. In this study, No 5-1 with 97.8% RPG recovery rate among $BC_2F_1$ plants was similar to HK13-1151 strain in the fruit shape. Therefore, the selected plants were fixed in $BC_2F_2$ generation through selfing. MAS allowed identification of the plants that are more similar to the recurrent parent for the loci evaluated in the backcross generations. MABC can greatly reduce breeding time as compared to the conventional backcross breeding. For instance, MABC approach greatly shortened breeding time in tomato.

Breeding of Doritaenopsis 'Hwasu 5205' with Vivid Red and Large Flowers (선명한 적색 대륜계 호접란 '화수 5205' 육성)

  • Lim, Ki-Byung;Kim, Hong-Yul;Park, No-Eun;Son, Beung-Gu;Yun, Suk-Young
    • Horticultural Science & Technology
    • /
    • v.33 no.6
    • /
    • pp.941-946
    • /
    • 2015
  • A new Doritaenopsis cultivar 'Hwasu 5205' was bred by Kyungpook National University, Korea, which produces young plants through tissue culture techniques. The new cultivar 'Hwasu 5205', showing the phenotype of vivid red and large flower type characteristics, was derived from crossing between Phalaenopsis Happy Valentine and Doritaenopsis Happy Rose. An elite individual, number '02-05-205' later named as 'Hwasu 5205', was selected among about 300 individual progenies after more than 2 years of intensive selection covering vegetative and flowering distinctiveness. In year 2004-2005, 1st and 2nd characteristic analyses were carried out through performance and uniformity tests. 'Hwasu 5205' produces vivid red (RHS #PN78B) flowers of i ncurved type with large size, of 9.2 and 12.0 cm in flower height and width, respectively. Leaves of 'Hwasu 5205' grow horizontally and are about 24.3cm in length and 8.5cm in width, respectively. This cultivar possesses no genetic variation. It can be propagated rapidly in vitro and is easy to grow due to its vigorous growth habit. 'Hwasu 5205' was registered (Reg. #: 2915) to Korea Seed & Variety Service (KSVS) on 1st December, 2009 and the PBR(plant breeder's right)is currently controlled by Sangmiwon Orchid Company, Korea.

Breeding of Phalaenopsis 'SM 333' with Mini Multiple Flower Formation (소형 다화 분지성 호접란 'SM 333' 육성)

  • Park, No Eun;Son, Beung Gu;Kim, Hong Yul;Lim, Ki-Byung
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.149-154
    • /
    • 2015
  • A new Phalaenopsis cultivar 'SM 333' was bred by Sangmiwon Orchid, Korea, which produces young plants through tissue culture techniques. The new cultivar 'SM 333', showing the phenotype of multiflora with pink color and small, multibranching-type characteristics, was derived from crossing between Phalaenopsis 'Odoriko' and 'Be Tris'. An elite individual number '02-03-33' later termed 'SM 333' was selected among about 300 individual progenies, based on an intensive selection process covering vegetative and flowering distinctiveness over more than 2 years. In year 2004-2005, the 1st and 2nd characteristic analyses were carried out through performance and uniformity tests. 'SM 333' shows flower color that is bright clean pink (RHS # RP69D) and flower shape that is formal type with 5.0 and 5.8 cm in flower height and width, respectively. 'SM 333' is regarded as raceme flower type suitable for the small casual flower market. The leaves of 'SM 333' grow horizontally and about 20.8 cm in length and 6.5 cm in width. This cultivar also possesses no genetic variation, and is amenable to fast in vitro propagation and easy growth due to its vigorous growth habit. This 'SM333' was registered (Reg. # 2916) with Korea Seed & Variety Service (KSVS) on 1st December, 2009, and the plant breeder's right is currently controlled by Sangmiwon Orchid Company, Korea.

Improvement of Seedling Establishment in Wet Direct Seeding of Rice using the Anaerobic Germination Tolerance Gene Derived from Weedy Photoblastic Rice (잡초벼 PBR 혐기발아 내성 유전자 활용 벼 담수직파 초기 입모 개선)

  • Jeong, Jong-Min;Mo, Youngjun;Baek, Man-Kee;Kim, Woo-Jae;Cho, Young-Chan;Ha, Su-Kyung;Kim, Jinhee;Jeung, Ji-Ung;Kim, Suk-Man
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.3
    • /
    • pp.161-171
    • /
    • 2020
  • Direct seeding is one of the rice seedling establishment methods that is increasingly being practiced by farmers to save labor and reduce costs. However, this method often causes poor germination under flooding conditions after sowing. In this study, we developed japonica elite lines with quantitative trait loci (QTL) associated with anaerobic germination (AG) tolerance to overcome poor germination and seedling establishment in wet direct seeding. The QTL introgression lines were developed from a cross between weedy photoblastic rice as the AG donor and the Nampyeong variety via phenotypic and genotypic selection. Compared to Nampyeong, the survival rates of the selected lines were improved by approximately 50% and 240% under field and greenhouse conditions, respectively. To improve selection efficiency by marker assisted selection, the QTL markers associated with AG tolerance were converted to cleaved amplified polymorphic sequence markers designed based on next-generation sequence analysis. These lines retained similar agronomic traits and yield potential to the parent, Nampyeong. Among these lines, we selected the most promising line, which exhibited high survival rate and good agricultural traits under flooding conditions and named the line as Jeonju643. This line will contribute to breeding programs aiming to develop rice cultivars adapted to wet direct seeding. This study demonstrates the successful application of marker-assisted selection to targeted introgression of anaerobic genes into a premium quality japonica rice variety.

Transformation of Bottle Gourd Rootstock (Lagenaria siceraria Standl.) using GFP gene (GFP유전자를 이용한 대목용 박 형질전환)

  • Lim, Mi-Young;Park, Sang-Mi;Kwon, Jung-Hee;Han, Sang-Lyul;Shin, Yoon-Sup;Han, Jeung-Sul;Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.33-37
    • /
    • 2006
  • Bottle gourd (Lagenaria siceraria Standl.) has been used as a rootstock for the watermelon cultivation because of better growth ability at low temperature and avoidance from contamination of the soil disease. Since the genetic source for the elite rootstock is limited in nature, the genetic engineering method is inevitable to develop new lines especially to obtain the functionally important or multi-disease resistant bottle gourd. Recently, our lab has set up a successful system to transform the bottle gourd. in order to monitor the transformation process, GFP gene is used. Cotyledons of the inbred line 9005, 9006 and G5 were used to induce the shoot under the selection media with MS + 30 g/L sucrose + 3.0 mg/L BAP + 100 mg/L kanamycin + 500 mg/L cefotaxime + 0.5 mg/L $AgNO_3$, pH 5.8. The shoot was developed from the cut side of the explants after 3 weeks on the selection media. The shoot was incubated in the rooting media with 1/2 MS + 30 g/L sucrose + 0.1 mg/L IAA + 50 mg/L kanamycin + 500 mg/L cefotaxime, pH 5.8 and moved to pot for acclimation. Although the shoot development rate was depended on the genotype, the G5 was the best line to be transformed. Monitoring GFP expression from the young shoot under microscope could make the selection much easier to distinguish the transformed shoot from the non-transformed shoots.

'Picnic', a New Mid-season Apple Cultivar with Medium Size and Good Taste (식미가 우수한 중과형 사과 '피크닉' 육성)

  • Kwon, Soon-Il;Park, Jong-Taek;Lee, Jung-Woo;Kim, Mok-Jong;Kim, Jeong-Hee
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.784-788
    • /
    • 2015
  • A new cultivar 'Picnic' originated from an artificial cross between 'Fuji' and 'Sansa' at National Institute of Horticultural & Herbal Science in 1994. The cultivar was preliminarily selected among the elite siblings for its high fruit quality in 2003. After regional adaptability tests in five districts for four subsequent years as 'Wonkyo Ga-34', it was ultimately selected in 2008. Optimum harvest time is late September. Mature fruit has mean weight of 233 g and is conic with light red skin on a greenish yellow ground and yellowish white flesh. The fruit contains a favorable total soluble solids content at $13.8^{\circ}Brix$ and titratable acidity at 0.43%, which results in gustatory harmony between sugars and acids. It is not resistant to bitter rot or Marssonina blotch. 'Picnic' exhibits a physiological cross compatibility with leading cultivars such as 'Fuji', 'Hongro' and 'Tsugaru'. Tree topology is semi-spreading with a weak growth habit.

Current status and prospects of molecular marker development for systematic breeding program in citrus (감귤 분자육종을 위한 분자표지 개발 현황 및 전망)

  • Kim, Ho Bang;Kim, Jae Joon;Oh, Chang Jae;Yun, Su-Hyun;Song, Kwan Jeong
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.261-271
    • /
    • 2016
  • Citrus is an economically important fruit crop widely growing worldwide. However, citrus production largely depends on natural hybrid selection and bud sport mutation. Unique botanical features including long juvenility, polyembryony, and QTL that controls major agronomic traits can hinder the development of superior variety by conventional breeding. Diverse factors including drastic changes of citrus production environment due to global warming and changes in market trends require systematic molecular breeding program for early selection of elite candidates with target traits, sustainable production of high quality fruits, cultivar diversification, and cost-effective breeding. Since the construction of the first genetic linkage map using isozymes, citrus scientists have constructed linkage maps using various DNA-based markers and developed molecular markers related to biotic and abiotic stresses, polyembryony, fruit coloration, seedlessness, male sterility, acidless, morphology, fruit quality, seed number, yield, early fruit setting traits, and QTL mapping on genetic maps. Genes closely related to CTV resistance and flesh color have been cloned. SSR markers for identifying zygotic and nucellar individuals will contribute to cost-effective breeding. The two high quality citrus reference genomes recently released are being efficiently used for genomics-based molecular breeding such as construction of reference linkage/physical maps and comparative genome mapping. In the near future, the development of DNA molecular markers tightly linked to various agronomic traits and the cloning of useful and/or variant genes will be accelerated through comparative genome analysis using citrus core collection and genome-wide approaches such as genotyping-by-sequencing and genome wide association study.