• 제목/요약/키워드: elimination mapping cone

검색결과 1건 처리시간 0.015초

PROJECTIONS OF ALGEBRAIC VARIETIES WITH ALMOST LINEAR PRESENTATION I

  • Ahn, Jeaman
    • 충청수학회지
    • /
    • 제32권1호
    • /
    • pp.15-21
    • /
    • 2019
  • Let X be a reduced closed subscheme in ${\mathbb{P}}^n$ and $${\pi}_q:X{\rightarrow}Y={\pi}_q(X){\subset}{\mathbb{P}}^{n-1}$$ be an isomorphic projection from the center $q{\in}{\mathbb{P}}^n{\backslash}X$. Suppose that the minimal free presentation of $I_X$ is of the following form $$R(-3)^{{\beta}2,1}{\oplus}R(-4){\rightarrow}R(-2)^{{\beta}1,1}{\rightarrow}I_X{\rightarrow}0$$. In this paper, we prove that $H^1(I_X(k))=H^1(I_Y(k))$ for all $k{\geq}3$. This implies that Y is k-normal if and only if X is k-normal for $k{\geq}3$. Moreover, we also prove that reg(Y) ${\leq}$ max{reg(X), 4} and that $I_Y$ is generated by homogeneous polynomials of degree ${\leq}4$.