• 제목/요약/키워드: elevated-temperature

검색결과 1,498건 처리시간 0.027초

티타늄 합금판재(Ti-6Al-4V)의 고온 성형성 평가 (Evaluation of press formability for Ti-6Al-4V sheet at elevated temperature)

  • 배문기;박진기;김정한;박노광;김영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.152-157
    • /
    • 2009
  • Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only aerospace parts but also bio prothesis and motorcycle. But the database is insufficient of the titanium alloy for press forming process. In this study, the effect of temperature on the forming limit diagram was investigated for Ti-6Al-4V titanium alloy sheet through the Hocker's punch stretching test at elevated temperature. Experimental results obtained in this study can provide a database for development of press forming process at elevated temperature of Ti-6Al-4V titanium alloy sheet. From the experimental studies it can be concluded that the formability of Ti-6Al-4V titanium alloy sheet is governed by the ductile failure for the testing temperature below and vice versa neck-induced failure above the recrystalization temperature $0.5T_m$. The formability of Ti-6Al-4V titanium alloy sheet at $750^{\circ}C$ increases about 7 times compared with that at room temperature.

  • PDF

고강도강재의 고온인장특성에 관한 실험적 연구 (A Experimental Study on High Temperature Tensile Property of High Strength Steel)

  • 장경호;이진형;신영의
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2003년도 춘계학술발표대회 개요집
    • /
    • pp.260-262
    • /
    • 2003
  • In this study, high temperature tensile properties of high tensile strength steels(POSTEN60, POSTEN80) were investigated by elevated temperature tensile test. According toe the results, high temperature tensile strength of POSTEN60 deteriorated slowly to 100$^{\circ}C$. As the temperature went up the tensile strength became better because of blue shortness and it deteriorated radically after reached to the maximum value around 300$^{\circ}C$. For the POSTEN80, high temperature tensile strength deteriorated slowly to 200$^{\circ}C$.As the temperature went up the tensile strength became better and it deteriorated slowly to 600$^{\circ}C$ after reached to the maximum value around 300$^{\circ}C$. Strain of high tensile strength steels at the elevated temperature increased radically after the mercury rose to 600$^{\circ}C$. The strain hardening ratio of POSTEN60 was larger then that of POSTEN80 at the elevated temperature as in the case at the room temperature and it became smaller radically after the mercury rose to 400$^{\circ}C$.

  • PDF

오스테나이트계 내열 구상흑연주철의 고온 특성 (Elevated Temperature Properties of Austenitic Heat-resistant Ductile Irons)

  • 최경환;서정혁;김수황
    • 한국주조공학회지
    • /
    • 제37권2호
    • /
    • pp.31-37
    • /
    • 2017
  • A new form of austenitic heat-resistant ductile iron was developed and its microstructures and elevated temperature properties were compared to those of Ductile Ni-Resist D5S. According to JMatPro calculations, it was predicted that Mo-rich carbides would be crystallized before the eutectic reaction starts in the developed alloy. At the austenite cell boundaries of the developed alloy, both Mo-rich carbides and Cr-rich carbides were found. In addition, Ni-silicides were found adjacent to Cr-rich carbides in D5S specimen and were identified as $Ni_2Si$. The developed alloy also had greater yield strength and lower tensile strength levels with less elongation due to the dissolution of Mo atoms into the austenite matrix and the precipitation of Mo-rich carbides. From the results of elevated temperature tensile tests and stress-rupture tests, it was found that the developed alloy had elevated temperature properties superior to those of D5S. This was due to the pinning effect of the dissolved Mo atoms in the austenite matrix.

압력용기용 고온재의 이종재 마찰용접과 AE평가 (Dissimilar Friction Welding of Elevated Temperature Materials for Pressure Vessels and Its AE Evaluation)

  • 공유식;이연탁;유인종;오세규;임만배
    • 동력기계공학회지
    • /
    • 제6권1호
    • /
    • pp.68-73
    • /
    • 2002
  • An opportunity to use the elevated temperature has been recently increasing in various elements of heat facilities or machines such as heat exchanger tubes, pressure vessels, engines of aircraft, boilers and turbines in power plants, and nuclear reactor components, etc. as machinery industry develops. Thus, the development of such elevated-temperature heat-resisting materials and the studies on their elevated-temperature materials friction welding, creep design and analysis have been considered as an important and needful fact. In this paper, friction welding optimization for 1Cr0.5Mo to STS304 and AE applications for the weld quality evaluation were investigated. The important results of this study are as follows : The techniques for dissimilar friction welding optimization of the elevated temperature materials 1Cr0.5Mo and STS304 and its real-time weld quality evaluation by AE were developed, considering on both strength and toughness. Quantitative relationship was identified among welding condition, weld quality and cumulative AE counts.

  • PDF

연료전지 분리판의 고온 강성 인자 연구 (Assessment of the Stiffness factor of the Separator Plate at the Elevated Temperature)

  • 김정현;우동욱;이상욱
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.296-299
    • /
    • 2007
  • The focus of this study is to estimate the stiffness factor of the separator plate of MCFC (Molten Carbonate Fuel Cell) at the elevated temperature. The process factors affecting the stiffness of the separator plate were chosen to determine the most important factor using the finite element analysis with the Taguchi method. The most influential factor, picked out by the ANOYA, turned out the pitch in the separator plate.

  • PDF

Spectroscopic Studies on Pu(III) Hydrolysis Under Reducing and Elevated Temperatures Conditions

  • Cho, Hye-Ryun;Kim, Hee Kyung;Jung, Euo Chang;Cha, Wansik
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2017년도 추계학술논문요약집
    • /
    • pp.137-138
    • /
    • 2017
  • The spectroscopic reference data for plutonium at different temperatures are necessary information for the chemical speciation and evaluation of thermodynamic data at elevated temperature. This work is the initial step to extend research activities for understanding the plutonium chemistry in aquatic solutions at high temperature. The hydrolysis of Pu(III) and the solubility of Pu(III) hydroxide at the elevated temperature will be discussed.

  • PDF

Strengthening of concrete damaged by mechanical loading and elevated temperature

  • Ahmad, Hammad;Hameed, Rashid;Riaz, Muhammad Rizwan;Gillani, Asad Ali
    • Advances in concrete construction
    • /
    • 제6권6호
    • /
    • pp.645-658
    • /
    • 2018
  • Despite being one of the most abundantly used construction materials because of its exceptional properties, concrete is susceptible to deterioration and damage due to various factors particularly corrosion, improper loading, poor workmanship and design discrepancies, and as a result concrete structures require retrofitting and strengthening. In recent times, Fiber Reinforced Polymer (FRP) composites have substituted the conventional techniques of retrofitting and strengthening of damaged concrete. Most of the research studies related to concrete strengthening using FRP have been performed on undamaged test specimens. This contribution presents the results of an experimental study in which concrete specimens were damaged by mechanical loading and elevated temperature in laboratory prior to application of Carbon Fiber Reinforced Polymer (CFRP) sheets for strengthening. The test specimens prepared using concrete of target compressive strength of 28 MPa at 28 days were subjected to compressive and splitting tensile testing up to failure and the intact pieces of the failed specimens were collected for the purpose of repair. In order to induce damage as a result of elevated temperature, the concrete cylinders were subjected to $400^{\circ}C$ and $800^{\circ}C$ temperature for two hours duration. Concrete cylinders damaged under compressive and split tensile loads were re-cast using concrete and rich cement-sand mortar, respectively and then strengthened using CFRP wrap. Concrete cylinders damaged due to elevated temperature were also strengthened using CFRP wrap. Re-cast and strengthened concrete cylinders were tested in compression and splitting tension. The obtained results revealed that re-casting of specimens damaged by mechanical loadings using concrete & mortar, and then strengthened by single layer CFRP wrap exhibited strength even higher than their original values. In case of specimens damaged by elevated temperature, the results indicated that concrete strength is significantly dropped and strengthening using CFRP wrap made it possible to not only recover the lost strength but also resulted in concrete strength greater than the original value.

Ti-합금판재(Ti-6Al-4V)의 고온 성형성 평가 (Evaluation of Pess Formability for Ti-6Al-4V Sheet at Elevated Temperature)

  • 박진기;박노광;김영석
    • 소성∙가공
    • /
    • 제19권4호
    • /
    • pp.230-235
    • /
    • 2010
  • Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only for aerospace parts but also for bio prothesis and motorcycle. However, the database is insufficient in the titanium alloy for press forming process. In this study, the effect of temperature on the forming limit diagram was investigated for Ti-6Al-4V titanium alloy sheet through the Hecker‘s punch stretching test at elevated temperature. Experimental results obtained in this study can provide a database for the development of press forming process at elevated temperature of Ti-6Al-4V titanium alloy sheet. From the experimental studies it can be concluded that the formability of Ti-6Al-4V titanium alloy sheet is governed by the ductile failure for the testing temperature. The formability of Ti-6Al-4V titanium alloy sheet at $700^{\circ}C$ increases about 7 times compared with that at room temperature.

Thermal-pressure loading effect on containment structure

  • Kwak, Hyo-Gyoung;Kwon, Yangsu
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.617-633
    • /
    • 2014
  • Because the elevated temperature degrades the mechanical properties of materials used in containments, the global behavior of containments subjected to the internal pressure under high temperature is remarkably different from that subjected to the internal pressure only. This paper concentrates on the nonlinear finite element analyses of the nuclear power plant containment structures, and the importance for the consideration of the elevated temperature effect has been emphasized because severe accident usually accompanies internal high pressure together with a high temperature increase. In addition to the consideration of nonlinear effects in the containment structure such as the tension stiffening and bond-slip effects, the change in material properties under elevated temperature is also taken into account. This paper, accordingly, focuses on the three-dimensional nonlinear analyses with thermal effects. Upon the comparison of experiment data with numerical results for the SNL 1/4 PCCV tested by internal pressure only, three-dimensional analyses for the same structure have been performed by considering internal pressure and temperature loadings designed for two kinds of severe accidents of Saturated Station Condition (SSC) and Station Black-out Scenario (SBO). Through the difference in the structural behavior of containment structures according to the addition of temperature loading, the importance of elevated temperature effect on the ultimate resisting capacity of PCCV has been emphasized.

Impact of UV Radiation and Elevated Temperature on Growth of Phytoplanktons, P. micans, and S. costatum

  • Lee, Bong-Hun;Park, Heung-Jai;Park, Won-Woo;Kim, Woo-Seong
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제3권3호
    • /
    • pp.197-201
    • /
    • 1999
  • The growth of two phytoplanktons was studied in a natural environment and in the laboratory under artificial radiation conditions in the presence or absence of UV radiation. The effect of an elevated temperature on the two phytoplanktons was also examined. UV radiation resulted in a decrease in the growth of the two phytoplanktons ; P. micans was more affected by UV than S. costatum. Four hours of UV radiation decreased the motility of S. costatum and P. micans by 20% and 40%, respectively. Accordingly, an elevated temperature and UV radiation decreased the growth rate of the two phytoplanktons investigated.

  • PDF