• Title/Summary/Keyword: elemental image array

Search Result 52, Processing Time 0.032 seconds

Compression of 3D color integral images using 2D referencing technique (2차원 참조 기법을 이용한 3D 컬러 집적 영상의 압축)

  • Kim, Jong-Ho;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2693-2700
    • /
    • 2009
  • This paper proposes an effective compression method to utilize the 3D integral image with large amount of data obtained by a lens array in various applications. The conventional compression methods for still images exhibit low performance in terms of coding efficiency and visual quality, since they cannot remove the correlation between elemental images. In the moving picture compression methods, 1D scanning techniques that produce a sequence of elemental images are not enough to remove the directional correlation between elemental images. The proposed method effectively sequences the elemental images from an integral image by the 2D referencing technique and compresses them using the multi-frame referencing of H.264/AVC. The proposed 2D referencing technique selects the optimal reference image according to vertical, horizontal, and diagonal correlation between elemental images. Experimental results show that compression with the sequence of elemental images presents better coding efficiency than that of still image compression. Moreover, the proposed 2D referencing technique is superior to the 1D scanning methods in terms of the objective performance and visual quality.

Integral imaging system with enhanced depth of field using birefringence lens array

  • Park, Chan-Kyu;Lee, Sang-Shin;Hwang, Yong-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1135-1137
    • /
    • 2008
  • In this paper, it is proposed that the integral imaging technique is applied to reconstruct 3D (three dimensional) objects with enhanced depth of field, computationally and optically. Lens array using birefringence material is adopted to obtain the reconstruction. The elemental images sets are picked up through common micro lens array and utilized to present 3D reconstruction images using adopted lens array.

  • PDF

Enhanced Image Mapping Method for Computer-Generated Integral Imaging System (집적 영상 시스템을 위한 향상된 이미지 매핑 방법)

  • Lee Bin-Na-Ra;Cho Yong-Joo;Park Kyoung-Shin;Min Sung-Wook
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.295-300
    • /
    • 2006
  • The integral imaging system is an auto-stereoscopic display that allows users to see 3D images without wearing special glasses. In the integral imaging system, the 3D object information is taken from several view points and stored as elemental images. Then, users can see a 3D reconstructed image by the elemental images displayed through a lens array. The elemental images can be created by computer graphics, which is referred to the computer-generated integral imaging. The process of creating the elemental images is called image mapping. There are some image mapping methods proposed in the past, such as PRR(Point Retracing Rendering), MVR(Multi-Viewpoint Rendering) and PGR(Parallel Group Rendering). However, they have problems with heavy rendering computations or performance barrier as the number of elemental lenses in the lens array increases. Thus, it is difficult to use them in real-time graphics applications, such as virtual reality or real-time, interactive games. In this paper, we propose a new image mapping method named VVR(Viewpoint Vector Rendering) that improves real-time rendering performance. This paper describes the concept of VVR first and the performance comparison of image mapping process with previous methods. Then, it discusses possible directions for the future improvements.

Characteristics of integral imaging microscope using point light source array

  • Lim, Young-Tae;Park, Jae-Hyeung;Kwon, Ki-Chul;Kim, Nam
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1354-1356
    • /
    • 2009
  • In this paper, we explained characteristics of integral imaging microscope using point light source. To display the bio-medical information, which is captured as a form of the elemental images, using autostereoscopic displays, the characteristics analysis of three-dimensional information is required. For integral imaging microscope using point light source array, the elemental image capturing configuration has to satisfy a specific condition. We explain the condition to capture the elemental images and show the experimental results.

  • PDF

Resolution-enhanced Reconstruction of 3D Object Using Depth-reversed Elemental Images for Partially Occluded Object Recognitionz

  • Wei, Tan-Chun;Shin, Dong-Hak;Lee, Byung-Gook
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.139-145
    • /
    • 2009
  • Computational integral imaging (CII) is a new method for 3D imaging and visualization. However, it suffers from seriously poor image quality of the reconstructed image as the reconstructed image plane increases. In this paper, to overcome this problem, we propose a CII method based on a smart pixel mapping (SPM) technique for partially occluded 3D object recognition, in which the object to be recognized is located at far distance from the lenslet array. In the SPM-based CII, the use of SPM moves a far 3D object toward the near lenslet array and then improves the image quality of the reconstructed image. To show the usefulness of the proposed method, we carry out some experiments for occluded objects and present the experimental results.

Depth Extraction of Partially Occluded 3D Objects Using Axially Distributed Stereo Image Sensing

  • Lee, Min-Chul;Inoue, Kotaro;Konishi, Naoki;Lee, Joon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.275-279
    • /
    • 2015
  • There are several methods to record three dimensional (3D) information of objects such as lens array based integral imaging, synthetic aperture integral imaging (SAII), computer synthesized integral imaging (CSII), axially distributed image sensing (ADS), and axially distributed stereo image sensing (ADSS). ADSS method is capable of recording partially occluded 3D objects and reconstructing high-resolution slice plane images. In this paper, we present a computational method for depth extraction of partially occluded 3D objects using ADSS. In the proposed method, the high resolution elemental stereo image pairs are recorded by simply moving the stereo camera along the optical axis and the recorded elemental image pairs are used to reconstruct 3D slice images using the computational reconstruction algorithm. To extract depth information of partially occluded 3D object, we utilize the edge enhancement and simple block matching algorithm between two reconstructed slice image pair. To demonstrate the proposed method, we carry out the preliminary experiments and the results are presented.

Computational reconstruction techniques in integral imaging by use of a lenslet array

  • Shin, Dong-Hak;Kim, Eun-Soo;Lee, Byoung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1588-1591
    • /
    • 2005
  • In this paper, we propose novel computational reconstruction technique of three-dimensional objects in integral imaging by use of a lenslet array. We applied our technique to two different integral imaging systems according the distance between lenslet array and elemental image plane. Experimental results are presented and discussed as well.

  • PDF

Extraction of the elemental images of object With variant perspectivity at computational integral imaging

  • Lee, Guen-Sik;Hwang, Yong-Seok;Kim, Eun-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1258-1260
    • /
    • 2009
  • Generally, if we want to change the perspectivity of objects, we should change the position of object or camera, forward or backward. In this paper, recognition of the perspectivity of objects is proposed by using a new elemental image array which is made change the pinhole points horizontally.

  • PDF

Projection-Type Integral Imaging Using a Pico-projector

  • Yang, Yucheol;Min, Sung-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.714-719
    • /
    • 2014
  • A pico-projector is a compact and mobile projector that has an infinite focus. We apply the pico-projector to a projection-type integral imaging system, which can expand the image depth to form multiple central depth planes. In a projection-type integral imaging system, the image flipping problem arises because the expanded elemental images pass through a lens array. To solve this problem, we propose the ray tracing of a pico-projector at a central depth plane and compensate the elemental image using a pixel-mapping process. Experiments to verify the proposed method are performed, and the results are presented.

Improved Recognition of Far Objects by using DPM method in Curving-Effective Integral Imaging (커브형 집적영상에서 부분적으로 가려진 먼 거리 물체 인식 향상을 위한 DPM 방법)

  • Chung, Han-Gu;Kim, Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.2A
    • /
    • pp.128-134
    • /
    • 2012
  • In this paper, we propose a novel approach to enhance the recognition performance of a far and partially occluded three-dimensional (3-D) target in computational curving-effective integral imaging (CEII) by using the direct pixel-mapping (DPM) method. With this scheme, the elemental image array (EIA) originally picked up from a far and partially occluded 3-D target can be converted into a new EIA just like the one virtually picked up from a target located close to the lenslet array. Due to this characteristic of DPM, resolution and quality of the reconstructed target image can be highly enhanced, which results in a significant improvement of recognition performance of a far 3-D object. Experimental results reveal that image quality of the reconstructed target image and object recognition performance of the proposed system have been improved by 1.75 dB and 4.56% on the average in PSNR (peak-to-peak signal-to-noise ratio) and NCC (normalized correlation coefficient), respectively, compared to the conventional system.