• Title/Summary/Keyword: element-level

Search Result 2,381, Processing Time 0.032 seconds

Analysis of RC walls with a mixed formulation frame finite element

  • Saritas, Afsin;Filippou, Filip C.
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.519-536
    • /
    • 2013
  • This paper presents a mixed formulation frame element with the assumptions of the Timoshenko shear beam theory for displacement field and that accounts for interaction between shear and normal stress at material level. Nonlinear response of the element is obtained by integration of section response, which in turn is obtained by integration of material response. Satisfaction of transverse equilibrium equations at section includes the interaction between concrete and transverse reinforcing steel. A 3d plastic damage model is implemented to describe the hysteretic behavior of concrete. Comparisons with available experimental data on RC structural walls confirm the accuracy of proposed method.

J-integral calculation by domain integral technique using adaptive finite element method

  • Phongthanapanich, Sutthisak;Potjananapasiri, Kobsak;Dechaumphai, Pramote
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.461-477
    • /
    • 2008
  • An adaptive finite element method for analyzing two-dimensional and axisymmetric nonlinear elastic fracture mechanics problems with cracks is presented. The J-integral is used as a parameter to characterize the severity of stresses and deformation near crack tips. The domain integral technique, for which all relevant quantities are integrated over any arbitrary element areas around the crack tips, is utilized as the J-integral solution scheme with 9-node degenerated crack tip elements. The solution accuracy is further improved by incorporating an error estimation procedure onto a remeshing algorithm with a solution mapping scheme to resume the analysis at a particular load level after the adaptive remeshing technique has been applied. Several benchmark problems are analyzed to evaluate the efficiency of the combined domain integral technique and the adaptive finite element method.

3-D Topology Optimization by a Nodal Density Method Based on a SIMP Algorithm (SIMP 기반 절점밀도법에 의한 3 차원 위상최적화)

  • Kim, Cheol;Fang, Nan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.412-417
    • /
    • 2008
  • In a traditional topology optimization method, material properties are usually distributed by finite element density and visualized by a gray level image. The distribution method based on element density is adequate for a great mass of 2-D topology optimization problems. However, when it is used for 3-D topology optimization, it is always difficult to obtain a smooth model representation, and easily appears a virtualconnect phenomenon especially in a low-density domain. The 3-D structural topology optimization method has been developed using the node density instead of the element density that is based on SIMP (solid isotropic microstructure with penalization) algorithm. A computer code based on Matlab was written to validate the proposed method. When it was compared to the element density as design variable, this method could get a more uniform density distribution. To show the usefulness of this method, several typical examples of structure topology optimization are presented.

  • PDF

Bond-slip effect in steel-concrete composite flexural members: Part 1 - Simplified numerical model

  • Lee, WonHo;Kwak, Hyo-Gyoung;Hwang, Ju-young
    • Steel and Composite Structures
    • /
    • v.32 no.4
    • /
    • pp.537-548
    • /
    • 2019
  • This paper introduces an improved numerical model which can consider the bond-slip effect in steel-concrete composite structures without taking double nodes to minimize the complexity in constructing a finite element model. On the basis of a linear partial interaction theory and the use of the bond link element, the slip behavior is defined and the equivalent modulus of elasticity and yield strength for steel is derived. A solution procedure to evaluate the slip behavior along the interface of the composite flexural members is also proposed. After constructing the transfer matrix relation at an element level, successive application of the constructed relation is conducted from the first element to the last element with the compatibility condition and equilibrium equations at each node. Finally, correlation studies between numerical results and experimental data are conducted with the objective of establishing the validity of the proposed numerical model.

Preliminary Design of Current Lead for 21T Superconducting Magnet (21T 초전도자석을 위한 전류도입선 예비설계)

  • Choi, Y.S.;Kim, D.L.;Yang, H.S.;Lee, B.S.;Painter, Thomas A.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.3
    • /
    • pp.43-46
    • /
    • 2008
  • Design of current lead for 21T superconducting magnets is presented. The current lead is composed of a normal metal element, conducting the current from room temperature to intermediate temperature, and an HTS element, conducting the current down to liquid helium temperature. The metal element is disengaged from the HTS element without breaking vacuum after excitation. The optimization of the lead is performed to minimize the thermal heat load when carrying operational current with some margin. In order to confirm the feasibility of our new design, the intermediate joint between a normal metal and HTS element is fabricated and the reliability is tested during engage and disengage performance. The effects of vacuum level and performance cycle on the electrical contact resistance are also investigated.

A FINITE ELEMENT ANALYSIS OF THE CENTER OF RESISTANCE OF A MAXILLARY FIRST MOLAR (상악 제일대구치의 저항중심에 관한 유한요소법적 분석)

  • Cho, Jeong-Hyeon;Lee, Ki-Soo;Park, Young-Guk
    • The korean journal of orthodontics
    • /
    • v.23 no.2 s.41
    • /
    • pp.263-273
    • /
    • 1993
  • The purpose of this study was to analyse the center of resistance of the maxillary first molar using the 3-dimension finite element method. An extracted maxillary first molar of normal shape and average root length was selected and sectioned every 1.5mm parallel to the cementoenamel junction. Each section was traced and digitized to construct 3-D finite element model of the maxillary first molar. After a certain magnitude of counterbalancing moment(M) was applied to the tooth, a varying single force(F) of distomesial direction was applied to a certain point of th tooth until the tooth was translated. The force producing translation(Ft) was substituted to the equation ${\Delta}d=M/Ft$ to calculate the center of resistance of the maxillary first molar. And reducing the alveolar bone level 1.68mm, and 3.36mm below to the cementoenamel junction, the tooth movement was analysed to see the effect of reducing the alveolar bone level to the location of the center of resistance. The results were as follows ; 1. The center of resistance of the maxillary first molar was 3.72mm apical, 1.10mm buccal, and 0.71mm mesial to the geometric center of the horizontally sectioned surface at the cementoenamel junction. This point was 0.36mm apical, 1.20mm buccal, and 0.71mm mesial to the trifurcation point, indicating that it was not on the tooth root. 2. As the alveolar bone level was reduced, the center of resistance of the maxillary first molar was moved to the apical direction.

  • PDF

Effectiveness of 32-element Surface Coil Array for Accelerated Volume-Targeted Breath-Hold Coronary MRA (체적 지향형 호흡정지 자기공명 조영술의 가속화에 대한 32채널 코일 어레이의 효용성)

  • Lee, Hyun-Yeol;Suh, Jin-Suck;Park, Jae-Seok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.137-145
    • /
    • 2009
  • Purpose : To compare 12 and 32-element surface coil arrays for highly accelerated coronary magnetic resonance angiography (MRA) using parallel imaging. Materials and Methods : Steady state free precession coronary MRA was performed in 5 healthy volunteers at 1.5 T whole body MR scanner using both 12 and 32-element surface coil arrays. Left anterior descending and right coronary artery data sets were acquired for each volunteer. Data sets were sub-sampled for parallel imaging using reduction factors from 1 to 6. Mean geometry factor (g-factor), maximum g-factor, and artifact level were calculated for each of the two coil arrays. Results : Over all reduction factors, the mean and maximum g-factors and artifact level were significantly reduced using the 32-element array compared to the 12element array (P << 0.1). The mean g-factor was sensitive to the imaging orientations of coronary arteries while the maximum g-factor and artifact level were independent of orientation. Conclusion : The 32-element surface coil array significantly improves artifact and noise suppression for highly accelerated coronary MRA using parallel imaging. The increased acceleration factors made feasible with the 32-element array offer the potential to enhance spatial resolution or increase volumetric coverage for 3D coronary MRA.

  • PDF

Biomechanical stress and microgap analysis of bone-level and tissue-level implant abutment structure according to the five different directions of occlusal loads

  • Kim, Jae-Hoon;Noh, Gunwoo;Hong, Seoung-Jin;Lee, Hyeonjong
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.316-321
    • /
    • 2020
  • PURPOSE. The stress distribution and microgap formation on an implant abutment structure was evaluated to determine the relationship between the direction of the load and the stress value. MATERIALS AND METHODS. Two types of three-dimensional models for the mandibular first molar were designed: bone-level implant and tissue-level implant. Each group consisted of an implant, surrounding bone, abutment, screw, and crown. Static finite element analysis was simulated through 200 N of occlusal load and preload at five different load directions: 0, 15, 30, 45, and 60°. The von Mises stress of the abutment and implant was evaluated. Microgap formation on the implant-abutment interface was also analyzed. RESULTS. The stress values in the implant were as follows: 525, 322, 561, 778, and 1150 MPa in a bone level implant, and 254, 182, 259, 364, and 436 MPa in a tissue level implant at a load direction of 0, 15, 30, 45, and 60°, respectively. For microgap formation between the implant and abutment interface, three to seven-micron gaps were observed in the bone level implant under a load at 45 and 60°. In contrast, a three-micron gap was observed in the tissue level implant under a load at only 60°. CONCLUSION. The mean stress of bone-level implant showed 2.2 times higher than that of tissue-level implant. When considering the loading point of occlusal surface and the direction of load, higher stress was noted when the vector was from the center of rotation in the implant prostheses.

Analysis of Promoter Elements for Transcriptional Expression of Rat p53 Gene in Regenerating Liver

  • Lee, Min-Hyung;Song, Hai-Sun;Park, Sun-Hee;Choi, Jin-Hee;Yu, Sun-Hee;Park, Jong-Sang
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.45-50
    • /
    • 1999
  • We previously found three transcription factor-binding motifs in the rat p53 promoter. They are two recognition motifs of NF1-like protein (NF1-like element 1: -296 ~ -312, NF1-like element 2: -195 ~ -219) and a bHLH protein binding element (-142 ~ -146). In this study, we investigated the DNA-protein complex formation of the three elements with nuclear extracts from both normal and regenerating liver to find the element involved in the induced transcription of p53. The level of each DNA-protein complex on NF1-like and bHLH motifs was not changed. Instead, a new element located at -264 ~ -284 was detected in the DNase I footprinting assay with regenerating nuclear extract. This element has partial homology to the AP1 consensus motif. However, the competition studies with diverse oligonucleotides suggest that the binding protein is not AP1. An in vitro transcription assay shows that this element is important for the transcriptional activation of the rat p53 promoter. Therefore, for the induced transcription of the rat p53 promoter, the-264 ~ -284 region is required in addition to two NF1-like and one bHLH motif.

  • PDF

Analysis of Vibration and Radiated Noise of Circular Cylindrical Shell in the Air Using Spectral Finite Element Method and Boundary Element Method (스펙트럴유한요소법과 경계요소법을 이용한 셸의 공기 중 진동 및 방사소음 해석)

  • Lee, Yung-Koo;Hong, Suk-Yoon;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1192-1201
    • /
    • 2009
  • Analysis of the vibration characteristic for cylindrical shell is more complex than plates since the coupling effects are considered on three dimensions. Based on Love's equation, spectral finite element method(SFEM) is introduced to predict frequency response function of finite circular cylindrical shell in the air with simply supported - free boundary condition without simplifying the equation of motion. And for the radiated noise analysis of cylindrical shell, indirect boundary element method(BEM) is applied using out-of-plane displacements as an input from structural vibration analysis. Comparisons of the structural vibration results by the spectral finite element method and commercial code, NASTRAN(FEM based) are carried out. Likewise, for verification of radiated noise analysis results, commercial code, SYSNOISE(BEM based) are used.