• Title/Summary/Keyword: element load method

Search Result 2,585, Processing Time 0.027 seconds

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel Part II : Proposal of a method to use shell element model

  • Kim, Jae Woong;Jang, Beom Seon;Kang, Sung Wook
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.245-256
    • /
    • 2014
  • I-core sandwich panel that has been used more widely is assembled using high power $CO_2$ laser welding. Kim et al. (2013) proposed a circular cone type heat source model for the T-joint laser welding between face plate and core. It can cover the negative defocus which is commonly adopted in T-joint laser welding to provide deeper penetration. In part I, a volumetric heat source model is proposed and it is verified thorough a comparison of melting zone on the cross section with experiment results. The proposed model can be used for heat transfer analysis and thermal elasto-plastic analysis to predict welding deformation that occurs during laser welding. In terms of computational time, since the thermal elasto-plastic analysis using 3D solid elements is quite time consuming, shell element model with multi-layers have been employed instead. However, the conventional layered approach is not appropriate for the application of heat load at T-Joint. This paper, Part II, suggests a new method to arrange different number of layers for face plate and core in order to impose heat load only to the face plate.

Analysis of a Journal and Thrust FDB and a Conical FDB in the Spindle Motor of a Computer Hard Disk Drive (HDD 스핀들 모터용 저널-스러스트 유체동압 베어링과 코니컬 유체동압 베어링의 특성해석비교)

  • Kim, Bum-Cho;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.478-483
    • /
    • 2005
  • This paper presents the comparison analysis of a Journal and thrust FDB (fluid dynamic bearing) and a conical FDB in a HDD spindle motor. The Reynolds equation is appropriately transformed to describe journal, thrust and conical bearing. Finite element method is applied to analyze the FDB by satisfying the continuity of mass and pressure at the interface between the hearings. The pressure field of the bearings is numerically approximated by applying the Reynolds boundary condition. The load and friction torque are obtained by integrating the pressure and the velocity gradient along the fluid film. The flying height of the spindle motor is measured to verify the proposed analytical result. This research shows that the conical bearing generates bigger load capacity and less friction torque than the journal and thrust bearing in a HDD spindle motor.

  • PDF

A Study on the Vibration Control Using Magnetic Bearings of the Flexible Shaft Supported by Hydrodynamic Bearings (동수압 베어링으로 지지되는 연성축의 자기 베어링을 이용한 진동제어에 관한 연구)

  • 정성천;장인배;한동철
    • Tribology and Lubricants
    • /
    • v.10 no.2
    • /
    • pp.43-50
    • /
    • 1994
  • The hydrodynamic bearing is accepted in many rotating systems because it has a large load carrying capacity. But the anisotropic pressure distribution of the bearing can arise the unstable vibration phenomenon over a certain speed. The magnetic bearing is an active element so that the unstable phenomenon of the hydrodynamic bearing, which is induced by the anisotropic support pressure of the oil film, can be controlled if the control algorithm and the controller gains are chosen appropriately. In this study, we investigate the stabilization method of the hydrodynamic bearing system composing the hybrid bearing which is the single unit of hydrodynamic bearing and magnetic bearing. The load carrying conditions of the hybrid bearing is modelled by the sum of the stiffness and damping coefficients of the hydrodynamic and the magnetic bearings in each direction. The dynamics of the rotor is analyzed by the Finite Element Method and the stability limit is determined by the eigenvalues of the hybrid bearings and shaft system. The eigenvalue study of the system shows that the stability limit of the hybrid bearing is increased compared to that of the hydrodynamic bearing. A Small increment of the stiffness and damping coefficient of the hybrid bearings by the magnetic actuators can increase the stability limit of the system. In this paper we tried to show the design references of the hybrid bearings by using the nondimensional bearing parameters. The analysis results show the possibilities of the stability limit increment of the hydrodynamic bearing system by combining the magnetic bearing.

Relative static and dynamic performances of composite conoidal shell roofs

  • Bakshi, Kaustav;Chakravorty, Dipankar
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.379-397
    • /
    • 2013
  • Conoidal shells are doubly curved stiff surfaces which are easy to cast and fabricate due to their singly ruled property. Application of laminated composites in fabrication of conoidal shells reduces gravity forces and mass induced forces compared to the isotropic constructions due to the high strength to weight ratio of the material. These light weight shells are preferred in the industry to cover large column free open spaces. To ensure design reliability under service conditions, detailed knowledge about different behavioral aspects of conoidal shell is necessary. Hence, in this paper, static bending, free and forced vibration responses of composite conoidal shells are studied. Lagrange's equation of motion is used in conjunction with Hamilton's principle to derive governing equations of the shell. A finite element code using eight noded curved quadratic isoparametric elements is developed to get the solutions. Uniformly distributed load for static bending analysis and three different load time histories for solution of forced vibration problems are considered. Eight different stacking sequences of graphite-epoxy composite and two different boundary conditions are taken up in the present study. The study shows that relative performances of different shell combinations in terms of static behaviour cannot provide an idea about how they will relatively behave under dynamic loads and also the fact that the points of occurrence of maximum static and dynamic displacement may not be same on a shell surface.

Non-linear Structural Analysis of Main Wing Spar of High Altitude Long Endurance UAV (고고도 장기체공무인기 주익 Spar 비선형 구조 해석)

  • Park, Sang-Wook;Shin, Jeong-Woo;Lee, Mu-Hyoung;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.1
    • /
    • pp.24-29
    • /
    • 2015
  • In order to increase endurance flight efficiency of long endurance electric powered UAV, main wing of UAV should have high aspect ratio and low structural weight. Since a spar which consists of thin and slender structure for weight reduction can cause catastrophic failure during the flight, it is important to develop verification method of structural integrity of the spar with the light weight design. In this paper, process of structural analysis using non-linear finite element method was introduced for the verification of structural integrity of the spar. The static strength test of the spar was conducted to identify structural characteristic under the static load. Then, the experimental result of the spar was compared to the analytical result from the non-linear finite element analysis. It was found that the developed process of structural analysis could predict well the non-linear structural behavior of the spar under ultimate load.

Automatic Load and Displacement Incremental Algorithm for Geometric Non-Linear Finite Element Analysis of the Structure subjected to Conservative and Non-conservative Forces (보존력(保存力) 및 비보존력(非保存力)을 받는 구조물(構造物)의 기하적(幾何的) 비선형(非線形) 유한요소해석(有限要素解析)을 위한 하중(荷重) 및 변위증분(變位增分) 알고리즘의 개발(開發))

  • Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.11-22
    • /
    • 1990
  • An automatic incremental algorithm for geometric non-linear finite element analysis of the structures subjected to the conservative and non-conservative forces is presented. By making efficient combination of the load incremental method and the displacement incremental method, this scheme can trace various post-buckling equilibrium path such as snap-through and turning-back. Several numerical examples to demonstrate the feasibility of the present algorithm, over ranges of deformation that are well beyond those likely to occur in practical structures, are given and discussed.

  • PDF

Development of Hybrid FRP-Concrete Composite Pile Connection (하이브리드 FRP-Concrete 복합말뚝의 연결부의 개발)

  • Lee, Hyoung-Kyu;Park, Joon-Seok
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.52-57
    • /
    • 2014
  • Due to the advantageous mechanical properties of the fiber reinforced polymeric plastics(FRP), their application in the construction industries is ever increasing trend, as a substitute of structural steel which is highly vulnerable under hazardous environmental conditions (i.e., corrosion, humidity, etc.). In this study, hybrid FRP-concrete composite pile (HCFFT) connection is suggested. The HCFFT is consisted of pultruded FRP unit module, filament wound FRP which is in the outside of mandrel composed of circular shaped assembly of pultruded FRP unit modules, and concrete which is casted inside of the circular tube shaped hybrid FRP pile. Therefore, pultruded FRP can increase the flexural load carrying capacity, filament wound FRP and concrete filled inside can increase axial load carrying capacity. In the study, connection capacity of HCFFT(small and mid size) is investigated throughout experiments and finite element method. From the results of experiments, we suggested the connection methods about HCFFT pile connection.

Heat Transfer Analysis of Hydropneumatic Suspension Unit By Finite Element Method (유한요소법을 이용한 유기압 현수장치의 열전달 해석)

  • Bae, Jing-Do;Cho, Jin-Rae;Lee, Hong-Woo;Song, Jung-In;Lee, Jin-Kyoo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.531-536
    • /
    • 2004
  • In-arm type hydropeumatic suspension unit(ISU) is an equipment of armed tracked vehicle to absorb impact load and vibration from the irregular ground. During the operation of ISU, main piston moves forward and backward and oil flowing through damper transmits the external impact load to floating piston. Heat is generated in ISU by the oil pressure drop through the damper orifice and the friction between cylinder wall and two pistons. On the other hand, internal heat dissipatis outside via heat convection. Occurrence of high temperature can deteriorate durability of major components and basic function of ISU. And, it can cause fatal problem in the ISU life time and the sealing performance of piston rings. As well, the spring constant change of nitrogen gas that is caused by the temperature rise exerts the negative effect to the vehicle stability. Therefore, in this paper, we analyze the heat transfer analysis of the entire ISU unit, by finite element method, with the outside flow velocities 8m/s and 10m/s.

  • PDF

Full-Scale Model Test of Vertical Drain Materials using Recycled Aggregates and Crushed Stone (순환골재와 쇄석을 이용한 연직배수재의 실내모형실험)

  • Lee, Dal-Won;Lee, Jeong-Jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.103-111
    • /
    • 2012
  • In this study, the full-scale laboratory model test on utilization of recycled aggregates and crushed stone as vertical drains to use an alternative material of sand in soft ground is performed. The settlement and pore water pressure were measured to evaluate the discharge capacity and filed application, and the results were compared and analyzed through the finite element method. The measured and estimated settlement in all vertical drain materials decreases gradually with the load increase. The measured settlement 6.55~8.63 mm, and the estimated by the Hyperbolic model was 7.45~7.92 mm. So the model used for the analysis can be applied to the settlement estimation of the actual field. The variations of pore water pressure with time showed constantly regardless of the load in all vertical drainage materials. The pore water pressure was similarity to that of sand after rapid drawdown. Therefore, it was applicable to the field because discharge capacity was enough to be an alternative material to the sand which had been being used as the vertical drains.

Seismic Behavior Characteristics of Stone Pagoda According to Contact Surface Types (접촉면 처리 방식에 따른 석탑의 내진 특성 평가)

  • Kim, Ho-Soo;Kim, Dong-Kwan;Won, Tae-Ho;Jeon, Geon-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.3
    • /
    • pp.41-50
    • /
    • 2019
  • The stone pagoda continued to be damaged by weathering and corrosion over time, and natural disasters such as earthquake are accelerating the destruction of cultural properties. Stone pagoda has discontinuous structure behavior and is very vulnerable to the seismic load acting in lateral direction. It is necessary to analyze various design variables as the contact surface characteristics play an important role in the dynamic behavior of stone pagodas. For this purpose, contact surface characteristics of stone pagoda can be classified according to surface roughness and filler type, and representative model is selected and structural modeling and analysis are performed using the discrete element method. Also, the seismic load according to the repetition period is calculated and the dynamic analysis is performed considering the discontinuous characteristics of the stone pagoda. Finally, the seismic behavior characteristics can be analyzed by the evaluation of stresses, displacements and structural safety.