• 제목/요약/키워드: element division

검색결과 1,701건 처리시간 0.034초

초대형 해상 크레인의 선체구조 강도평가 (The Hull Strength Assessment for Heavy Lift Floating Crane)

  • 강용구;백승훈;이준혁;박우진;심대성;안용택;조병삼
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2015년도 특별논문집
    • /
    • pp.1-8
    • /
    • 2015
  • In general, the strength assessment for heavy lift vessel is carried out under two stages. The first stage is to comply with the requirement of KR (Korean Register of Shipping) Steel Barges and Rules for Classification of Steel Ships. At the second stage, the structural strength analysis by Finite Element Method is peformed. This paper describes the strength assessment considering various loads for the heavy lift vessel of sheerleg type.

  • PDF

Plant Analysis Methods for Evaluating Mineral Nutrient

  • Lee, Ye-Jin;Sung, Jwa-Kyung;Lee, Seul-Bi;Lim, Jung-Eun;Song, Yo-Sung;Lee, Deog-Bae;Hong, Suk-Young
    • 한국토양비료학회지
    • /
    • 제50권2호
    • /
    • pp.93-99
    • /
    • 2017
  • Analysis of mineral nutrients in plant is required for evaluating diagnosis of plant nutritional status. Pretreatment procedure for the analysis of plant can be varied depending on elements to be analyzed. Wet-digestion is suitable for total nitrogen, phosphate and cations, however, digestion solution including nitric acid is not suitable for nitrogen analysis. Incineration procedure is required to analyze chloride, silicate and total sulfur. After digestion, total nitrogen is analyzed by Kjeldahl method, and phosphate is detected at 470nm by colorimetric analysis with ammonium meta vanadate. Cations and micro elements are determined by titration or colorimetry, also, these elements can be measured by Atomic absorption spectrometer (AAS) or Inductively coupled plasma spectrometer (ICP).

Arsenic-Induced Differentially Expressed Genes Identified in Medicago sativa L. roots

  • Rahman, Md. Atikur;Lee, Sang-Hoon;Kim, Ki-Yong;Park, Hyung Soo;Hwang, Tae Young;Choi, Gi Jun;Lee, Ki-Won
    • 한국초지조사료학회지
    • /
    • 제36권3호
    • /
    • pp.243-247
    • /
    • 2016
  • Arsenic (As) is a toxic element that easily taken up by plants root. Several toxic forms of As disrupt plant metabolism by a series of cellular alterations. In this study, we applied annealing control primer (ACP)-based reverse transcriptase PCR (polymerase chain reaction) technique to identify differentially expressed genes (DEGs) in alfalfa roots in response to As stress. Two-week-old alfalfa seedlings were exposed to As treatment for 6 hours. DEGs were screened from As treated samples using the ACP-based technique. A total of six DEGs including heat shock protein, HSP 23, plastocyanin-like domain protein162, thioredoxin H-type 1 protein, protein MKS1, and NAD(P)H dehydrogenase B2 were identified in alfalfa roots under As stress. These genes have putative functions in abiotic stress homeostasis, antioxidant activity, and plant defense. These identified genes would be useful to increase As tolerance in alfalfa plants.

교정용 미니임플랜트 식립 위치에 따른 dragon helix의 효과에 대한 유한요소해석 (Effects of orthodontic mini-implant position in the dragon helix appliance on tooth displacement and stress distribution: a three-dimensional finite element analysis)

  • 김민지;박선형;김현성;모성서;성상진;장강원;전윤식
    • 대한치과교정학회지
    • /
    • 제41권3호
    • /
    • pp.191-199
    • /
    • 2011
  • Objective: The purpose of this study was to investigate the stress distribution on the orthodontic mini-implant (OMI) surface and periodontal ligament of the maxillary first and second molars as well as the tooth displacement according to the OMI position in the dragon helix appliance during scissors-bite correction. Methods: OMIs were placed at two maxillary positions, between the first and the second premolars (group 1) and between the second premolar and the first molar (group 2). The stress distribution area (SDA) was analyzed by three-dimensional finite element analysis. Results: The maximal SDA of the OMI did not differ between the groups. It was located at the cervical area and palatal root apex of the maxillary first molar in groups 1 and 2, respectively, indicating less tipping in group 2. The minimal SDA was located at the root and furcation area of the maxillary second molar in groups 1 and 2, respectively, indicating greater palatal crown displacement in group 2. Conclusions: Placement of the OMI between the maxillary second premolar and the maxillary first molar to serve as an indirect anchor in the dragon helix appliance minimizes anchorage loss while maximizing the effect on scissors-bite correction.

고온 집진용 Fail Safety 소결 필터의 통기도와 분진제거 특성 (The Properties of Permeability and Ash-Removal of Sintered Fail Safety Filter of Dust Collector in High Temperature)

  • 배승열;안인섭;정우현;최주홍
    • 한국재료학회지
    • /
    • 제14권7호
    • /
    • pp.470-476
    • /
    • 2004
  • The fail safety filter is an assistant filter element to be mounted in order to intercept the particles leaked when the main filter elements are broken. So it should have two contrary functions of being plugged easily to meet the purpose of dust sealing and a high permeability to save the space. The permeability of the metal filter elements were effectively controlled by the following factor: powder size(53-840 ${\mu}m$) and applied pressure(1000-2000 $kgf/cm^2$), and then the compact were sintered for 1 hour at $1200^{\circ}C$ in vacuum sintering furnace. The sintered metal filters was evaluated for the function of the fail safety filter in an experimental unit. The maximum allowable particle size was 420-840 ${\mu}m$, when a CIP pressure of 1500 $kgf/cm^2$ was applied reveals a permeability of about $1.2{\times}10^{10}m^2$ and pore size of about 60 ${\mu}m$. The metal filter produced with stainless steel powder of 480-840 ${\mu}m$ size, which presented excellent permeability than commercial ceramic filter element and plugged with in 3 minutes with the leak of the maximum particle size less than 3 ${\mu}m$.

약물-용출 생분해성 고분자 스텐트를 위한 EGCG와 디자인 파라미터의 영향에 대한 연구 (A Study on Effects of EGCG and Design Parameter for Drug-Eluting Biodegradable Polymer Stents)

  • 정태곤;이종호;이준재;현승휴;한동욱
    • 대한의용생체공학회:의공학회지
    • /
    • 제34권3호
    • /
    • pp.111-116
    • /
    • 2013
  • Finite element analysis(FEA) has been extensively applied in the analyses of biomechanical properties of stents. Geometrically, a closed-cell stent is an assembly of a number of repeated unit cells and exhibits periodicity in both longitudinal and circumferential directions. This study concentrates on various parameters of the FEA models for the analysis of drug-eluting biodegradable polymeric stents for application to the treatment of coronary artery disease. In order to determine the mechanical characteristics of biodegradable polymeric stents, FEA was used to model two different types of stents: tubular stents(TS) and helicoidal stents(HS). For this modeling, epigallocatechin-3-O-gallate (EGCG)-eluting poly[(L-lactide-co-${\varepsilon}$-caprolactone), PLCL] (E-PLCL) was chosen as drug-eluting stent materials. E-PLCL was prepared by blending PLCL with 5% EGCG as previously described. In addition, the effects of EGCG blending on the mechanical properties of PLCL were investigated for both types of stent models. EGCG did not affect tensile strength at break, but significantly increased elastic modulus of PLCL. It is suggested that FEA is a cost-effective method to improve the design of drug-eluting biodegradable polymeric stents.

200kW급 수평축 조류발전 터빈 블레이드 형상 최적설계 (Optimal Design of Blade Shape for 200-kW-Class Horizontal Axis Tidal Current Turbines)

  • 서지혜;이진학;박진순;이광수
    • 한국해양공학회지
    • /
    • 제29권5호
    • /
    • pp.366-372
    • /
    • 2015
  • Ocean energy is one of the most promising renewable energy resources. In particular, South Korea is one of the countries where it is economically and technically feasible to develop tidal current power plants to use tidal current energy. In this study, based on the design code for HARP_Opt (Horizontal axis rotor performance optimizer) developed by NREL (National Renewable Energy Laboratory) in the United States, and applying the BEMT (Blade element momentum theory) and GA (Genetic algorithm), the optimal shape design and performance evaluation of the horizontal axis rotor for a 200-kW-class tidal current turbine were performed using different numbers of blades (two or three) and a pitch control method (variable pitch or fixed pitch). As a result, the VSFP (Variable Speed Fixed Pitch) turbine with three blades showed the best performance. However, the performances of four different cases did not show significant differences. Hence, it is necessary when selecting the final design to consider the structural integrity related to the fatigue, along with the economic feasibility of manufacturing the blades.

10MW급 부유식 파력-해상풍력 연계형 발전 시스템의 다수 풍력터빈 배치 설계 및 성능 평가 (Arrangement Design and Performance Evaluation for Multiple Wind Turbines of 10MW Class Floating Wave-Offshore Wind Hybrid Power Generation System)

  • 박세완;김경환;이강수;박연석;오현석;신형기;홍기용
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제18권2호
    • /
    • pp.123-132
    • /
    • 2015
  • 본 연구에서는 10 MW급 부유식 파력-해상풍력 연계형 발전시스템에 설치되는 다수 풍력발전기의 배치 설계를 수행하고, 전산유체역학 해석기법을 통해 다수 풍력발전기의 성능을 평가하였다. 날개요소운동량이론을 기반으로 한 풍력발전 단지 설계용 프로그램 WindPRO를 이용하여, 발전시스템의 적지 환경 풍황조건에 대해 최대에너지를 생산할 수 있는 배치 설계를 도출하였고, ANSYS CFX를 이용하여 다수 풍력발전기간의 후류 간섭영향을 발전기 성능 측면에서 검토하여, 근거리 다수 풍력발전기간의 후류 간섭이 시스템에 미치는 영향을 평가하였다.

Exact calculation of natural frequencies of repetitive structures

  • Williams, F.W.;Kennedy, D.;Wu, Gaofeng;Zhou, Jianqing
    • Structural Engineering and Mechanics
    • /
    • 제4권5호
    • /
    • pp.553-568
    • /
    • 1996
  • Finite element stiffness matrix methods are presented for finding natural frequencies (or buckling loads) and modes of repetitive structures. The usual approximate finite element formulations are included, but more relevantly they also permit the use of 'exact finite elements', which account for distributed mass exactly by solving appropriate differential equations. A transcendental eigenvalue problem results, for which all the natural frequencies are found with certainty. The calculations are performed for a single repeating portion of a rotationally or linearly (in one, two or three directions) repetitive structure. The emphasis is on rotational periodicity, for which principal advantages include: any repeating portions can be connected together, not just adjacent ones; nodes can lie on, and members along, the axis of rotational periodicity; complex arithmetic is used for brevity of presentation and speed of computation; two types of rotationally periodic substructures can be used in a multi-level manner; multi-level non-periodic substructuring is permitted within the repeating portions of parent rotationally periodic structures or substructures and; all the substructuring is exact, i.e., the same answers are obtained whether or not substructuring is used. Numerical results are given for a rotationally periodic structure by using exact finite elements and two levels of rotationally periodic substructures. The solution time is about 500 times faster than if none of the rotational periodicity had been used. The solution time would have been about ten times faster still if the software used had included all the substructuring features presented.

동식물의 나선속의 하중(荷重) Hadamard Transform : 대칭과 Element-wise Inverse 행렬 (Weighted Hadamard Transform in the Helix of Plants and Animals :Symmetry and Element-wise Inverse Matrices)

  • 박주용;김정수;이문호
    • 한국인터넷방송통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.319-327
    • /
    • 2016
  • 본 논문에서는 나무나 염소 뿔처럼 대부분의 동식물이 대칭임을 살펴본다. 또한 DNA를 가지고 있는 인간의 신체 역시 대칭이다. 피보나치수열, 식물의 나선, 동물의 대수 나선에서 볼 수 있는 것은 대칭이다. 해바라기 꽃은 원형이다. 원(元)은 원점을 중심으로 회전을 해도 모양이 꼭 같으므로 회전대칭이다. 공간상의 회전변환을 넘어서, 시간 공간의 대칭적 변환으로 일반화하면 아인슈타인의 특수상대성 이론이 시공간 변환관계이다. 동식물의 나선은 좌우 나선들이 대칭을 이루며 그 속에는 element-wise inverse가 존재한다. Hadamard 행렬 중 가운데 하중 값을 2로 준 것은 자연대수의 밑 2와 같고, 나선 행렬은 Symmetric하며 역행렬은 element-wise inverse이다.