• Title/Summary/Keyword: element division

Search Result 1,685, Processing Time 0.029 seconds

Seismic performance assessment of deteriorated reinforced concrete columns using a new plastic-hinge element

  • Tae-Hoon Kim;Hosung Jung
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.139-148
    • /
    • 2023
  • The purpose of this paper is to numerically assess the seismic performance of deteriorated reinforced concrete columns using a new plastic-hinge element. Developing a three dimensional (3D) nonlinear model can be difficult and computationally complex, and there can be problems applying it in the field. Thus, to solve these problems, a plastic-hinge element that could considers the shear deformation of deteriorated reinforced concrete columns was proposed. The developed element was based on the Timoshenko beam model and used two nodes with six degrees of freedom and a zero-length element. Moreover, the developed model could consider the combined effects of corrosion, as demonstrated by the reduced reinforcement area and the loss of bond. Consequently, the numerical procedures developed for evaluating the seismic performance of deteriorated columns were validated by comparing the verification results.

Generalized beam-column finite element on two-parameter elastic foundation

  • Morfidis, K.;Avramidis, I.E.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.519-537
    • /
    • 2005
  • A new generalized Bernoulli/Timoshenko beam-column element on a two-parameter elastic foundation is presented herein. This element is based on the exact solution of the differential equation which describes the deflection of the axially loaded beam resting on a two-parameter elastic foundation, and can take into account shear deformations, semi - rigid connections, and rigid offsets. The equations of equilibrium are formulated for the deformed configuration, so as to account for axial force effects. Apart from the stiffness matrix, load vectors for uniform load and non-uniform temperature variation are also formulated. The efficiency and usefulness of the new element in reinforced concrete or steel structures analysis is demonstrated by two examples.

Effect of Zircon on Rare-Earth Element Determination of Granitoids by ICP-MS (ICP-MS를 이용한 화강암내 희토류원소 분석시 저어콘이 미치는 영향)

  • Lee, Seung-Gu;Kim, Taehoon;Han, Seunghee;Kim, Hyeon Cheol;Lee, Hyo Min;Tanaka, Tsuyoshi;Lee, Seung Ryeol;Lee, Jong Ik
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.337-349
    • /
    • 2014
  • We measured rare earth element and Zr concentrations of USGS granite standard material GSP-2 and GSJ granite standard material JG-1a to clarify the effect of zircon during rare earth element analysis using ICP-MS. We also measured rare-earth element and zirconium (Zr) contents of zircon from granite by acid-digestion methods using conventional teflon vial and pressure-bomb. The results show that acid-digestion using teflon vial dissolved ca. 50% of zircon compared to pressure-bomb method. The Zr contents of JG-1a and GSP-2 gave ca 50% of reference value. However, rare-earth element abundance of JG-1a and GSP-2 were similar to those of reference values. This suggests that the decomposition degree of zircon might give a negligible effect on a petrological and geochemical interpretation using chondritenormalized REE pattern.

Analysis and Design of High Efficiency Feedforward Amplifier Using Distributed Element Negative Group Delay Circuit (분산 소자 형태의 마이너스 군지연 회로를 이용한 고효율 피드포워드 증폭기의 분석 및 설계)

  • Choi, Heung-Jae;Kim, Young-Gyu;Shim, Sung-Un;Jeong, Yong-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.681-689
    • /
    • 2010
  • We will demonstrate a novel topology for the feedforward amplifier. This amplifier does not use a delay element thus providing an efficiency enhancement and a size reduction by employing a distributed element negative group delay circuit. The insertion loss of the delay element in the conventional feedforward amplifier seriously degrades the efficiency. Usually, a high power co-axial cable or a delay line filter is utilized for a low loss, but the insertion loss, cost and size of the delay element still acts as a bottleneck. The proposed negative group delay circuit removes the necessity of the delay element required for a broadband signal suppression loop. With the fabricated 2-stage distributed element negative group delay circuit with -9 ns of total group delay, a 0.2 dB of insertion loss, and a 30 MHz of bandwidth for a wideband code division multiple access downlink band, the feedforward amplifier with the proposed topology experimentally achieved a 19.4 % power added efficiency and a -53.2 dBc adjacent channel leakage ratio with a 44 dBm average output power.

MIXED FINITE ELEMENT APPROXIMATION OF A STEFAN PROBLEM

  • Shin, Jun-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.357-364
    • /
    • 2003
  • A fully discrete $H^1-mixed$ finite element approximation for the single-phase Stefan problem is introduced and the unique existence of the approximation is established. And some numerical experiments are given.

Analysis of Dielectric Waveguide Using Vector Finite Element Method (벡터유한요소법을 이용한 유전체 도파관 해석)

  • Kim, Young-Tae;Lee, Pil-Yong;Park, Jun-Seok;Ahn, Dal;Kim, Hyeong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.597-599
    • /
    • 2000
  • In this paper, Dielectirc waveguides have been calculated using the vector finite element method. This method is introduced that allows propagation constants and electric field distribution to be computed directly. In order to obtain more accurate solutions, Second order vector elements are proposed.

  • PDF

Comparison between Field Test and Numerical Analysis for a Jacket Platform in Bohai Bay, China

  • Yang He-Zhen;Park Han-Il;Choi Kyung-Sik;Li Hua-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.1-7
    • /
    • 2006
  • This paper, presents a comparison between numerical analysis and field test on a real offshore platform in Bohai Bay, China. This platform is a steel jacket offshore platform with vertical piles. The field testing under wave-induced force and wind force etc. was conducted, in order to obtain the dynamic parameters of the structure, including the frequencies of the jacket platform, as well as the corresponding damping ratios and mode shapes. The natural excitation technology (NexT) combined with eigensystem realization algorithm (ERA) and the peak picking (PP) method in frequency domain are carried out for modal parameter indentification under operational conditions. The three-dimeansional finite element model (FEM) is constructed by ANSYS and analytical modal analysis is performed to generate modal parameters. The analytical results were compared with experimental results. A good agreement was achieved between the finite element and analysis and field test results. It is further demonstrated that the numerical and experimental modal analysis provide a comprehensive study on the dynamic properties of the jacket platform. According to the analysis results, the modal parameters identification under ambient excitation can calibrate finite element model of the jacket platform structures, or can be used for the structural health monitoring system.

A Study on Improvement of Performance for Perforated Type Total HEX Element (다공형 유로를 적용한 전열교환기 소자의 성능향상에 관한 연구)

  • Kwak, Kyung-Min;Bai, Cheol-Ho;Kim, Jee-Yong;Chu, Euy-Sun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.7
    • /
    • pp.529-536
    • /
    • 2007
  • The perforated type element for a heat recovery ventilation system has been studied to improve the performance. Four holes of diameter of 6mm are punched out for each flow channel to break the boundary layer development and increase the turbulence. KS cooling and heating conditions and test procedures are applied for study. The efficiencies are compared to those of the typical element with smooth surface. For cooling operations, the temperature, latent and enthalpy efficiencies increase 2.5%, 18% and 8%, respectively. For heating operations, the temperature, latent and enthalpy efficiencies increase 3%, 5% and 3.2%, respectively.