• Title/Summary/Keyword: element detection

Search Result 648, Processing Time 0.025 seconds

Development of Traffic Safety Monitoring Technique by Detection and Analysis of Hazardous Driving Events in V2X Environment (V2X 환경에서 위험운전이벤트 검지 및 분석을 통한 교통안전 모니터링기법 개발)

  • Jeong, Eunbi;Oh, Cheol;Kang, Kyeongpyo;Kang, Younsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.1-14
    • /
    • 2012
  • Traffic management centers (TMC) collect real-time traffic data from the field and have powerful databases for analysing, recording, and archiving the data. Recent advanced sensor and communication technologies have been widely applied to intelligent transportation systems (ITS). Regarding sensors, various in-vehicle sensors, in addition to global positioning system (GPS) receiver, are capable of providing high resolution data representing vehicle maneuverings. Regarding communication technologies, advanced wireless communication technologies including vehicle-to-vehicle (V2V) and vehicle-to-vehicle infrastructure (V2I), which are generally referred to as V2X, have been widely used for traffic information and operations (references). The V2X environment considers the transportation system as a network in which each element, such as the vehicles, infrastructure, and drivers, communicates and reacts systematically to acquire information without any time and/or place restrictions. This study is motivated by needs of exploiting aforementioned cutting-edge technologies for developing smarter transportation services. The proposed system has been implemented in the field and discussed in this study. The proposed system is expected to be used effectively to support the development of various traffic information control strategies for the purpose of enhancing traffic safety on highways.

Distribution of Magnetic Field Depending on the Current in the μ-turn Coil to Capture Red Blood Cells (적혈구 포획용 미크론 크기 코일에 흐르는 전류의 크기에 따른 자기장 분포 특성)

  • Lee, Won-Hyung;Chung, Hyun-Jun;Kim, Nu-Ri;Park, Ji-Soo;Lee, Sang-Suk;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.5
    • /
    • pp.162-168
    • /
    • 2015
  • The ${\mu}$-turn coil having a width of ${\mu}m$ on the GMR-SV (giant magnetoresistance-spin valve) device based on the antiferromagnetic IrMn layer was fabricated by using the optical lithography process. In the case of GMR-SV film and GMR-SV device, the magnetoresistance ratios and the magnetic sensitivities are 4.4%, 2.0%/Oe and 1.6 %, 0.1%/Oe, respectively. In the y-z plane the distribution of magnetic field of GMR-SV device and $10{\mu}$-turns coil which put under the several magnetic bead(MB)s with a diameter of $1{\mu}m$ attached to RBC (red blood cell) was analyzed by the computer simulation using the finite element method. When the AC currents of 20 kHz from 0.1 mA to 10.0 mA flow to the 10 turns ${\mu}$-coil, the magnetic field at the position of $z=0{\mu}m$ at the center of coil was calculated from $30.1{\mu}T$ to $3060{\mu}T$ in proportion to the current. The magnetic field at the position of $z=10{\mu}m$ was decreased to one-sixth of that of $z=0{\mu}m$. It was confirmed that the $10{\mu}$-turn coil having enough magnitude of magnetic field for the capture of RBC is possible to use as a biosensor for the detection of magnetic beads attached to RBC.

Comparison of target classification accuracy according to the aspect angle and the bistatic angle in bistatic sonar (양상태 소나에서의 자세각과 양상태각에 따른 표적 식별 정확도 비교)

  • Choo, Yeon-Seong;Byun, Sung-Hoon;Choo, Youngmin;Choi, Giyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.330-336
    • /
    • 2021
  • In bistatic sonar operation, the scattering strength of a sonar target is characterized by the probe signal frequency, the aspect angle and the bistatic angle. Therefore, the target detection and identification performance of the bistatic sonar may vary depending on how the positions of the target, sound source, and receiver are changed during sonar operation. In this study, it was evaluated which variable is advantageous to change by comparing the target identification performance between the case of changing the aspect angle and the case of changing the bistatic angle during the operation. A scenario of identifying a hollow sphere and a cylinder was assumed, and performance was compared by classifying two targets with a support vector machine and comparing their accuracy using a finite element method-based acoustic scattering simulation. As a result of comparison, using the scattering strength defined by the frequency and the bistatic angle with the aspect angle fixed showed superior average classification accuracy. It means that moving the receiver to change the bistatic angle is more effective than moving the sound source to change the aspect angle for target identification.

A Development of Welding Information Management and Defect Inspection Platform based on Artificial Intelligent for Shipbuilding and Maritime Industry (인공지능 기반 조선해양 용접 품질 정보 관리 및 결함 검사 플랫폼 개발)

  • Hwang, Hun-Gyu;Kim, Bae-Sung;Woo, Yun-Tae;Yoon, Young-Wook;Shin, Sung-chul;Oh, Sang-jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.2
    • /
    • pp.193-201
    • /
    • 2021
  • The welding has a high proportion of the production and drying of ships or offshore plants. Non-destructive testing is carried out to verify the quality of welds in Korea, radiography test (RT) is mainly used. Currently, most shipyards adopt analog-type techniques to print the films through the shoot of welding parts. Therefore, the time required from radiography test to pass or fail judgment is long and complex, and is being manually carried out by qualified inspectors. To improve this problem, this paper covers a platform for scanning and digitalizing RT films occurring in shipyards with high resolution, accumulating them in management servers, and applying artificial intelligence (AI) technology to detect welding defects. To do this, we describe the process of designing and developing RT film scanning equipment, welding inspection information integrated management platform, fault reading algorithms, visualization software, and testing and verification of each developed element in conjunction.

Effects of exploration and molecular mechanism of CsV on eNOS and vascular endothelial functions

  • Zuo, Deyu;Jiang, Heng;Yi, Shixiong;Fu, Yang;Xie, Lei;Peng, Qifeng;Liu, Pei;Zhou, Jie;Li, Xunjia
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.501-514
    • /
    • 2022
  • This study aimed to investigate the effects and potential mechanisms of Chikusetsusaponin V (CsV) on endothelial nitric oxide synthase (eNOS) and vascular endothelial cell functions. Different concentrations of CsV were added to animal models, bovine aorta endothelial cells (BAECs) and human umbilical vein endothelial cells (HUVECs) cultured in vitro. qPCR, Western blotting (WB), and B ultrasound were performed to explore the effects of CsV on mouse endothelial cell functions, vascular stiffness and cellular eNOS mRNA, protein expression and NO release. Bioinformatics analysis, network pharmacology, molecular docking and protein mass spectrometry analysis were conducted to jointly predict the upstream transcription factors of eNOS. Furthermore, pulldown and ChIP and dual luciferase assays were employed for subsequent verification. At the presence or absence of CsV stimulation, either overexpression or knockdown of purine rich element binding protein A (PURA) was conducted, and PCR assay was employed to detect PURA and eNOS mRNA expressions, Western blot was used to detect PURA and eNOS protein expressions, cell NO release and serum NO levels. Tube formation experiment was conducted to detect the tube forming capability of HUVECs cells. The animal vasodilation function test detected the vasodilation functions. Ultrasonic detection was performed to determine the mouse aortic arch pulse wave velocity to identify aortic stiffness. CsV stimulus on bovine aortic cells revealed that CsV could upregulate eNOS protein levels in vascular endothelial cells in a concentration and time dependent manner. The expression levels of eNOS mRNA and phosphorylation sites Ser1177, Ser633 and Thr495 increased significantly after CsV stimulation. Meanwhile, CsV could also enhance the tube forming capability of HUVECs cells. Following the mice were gavaged using CsV, the eNOS protein level of mouse aortic endothelial cells was upregulated in a concentration- and time-dependent manner, and serum NO release and vasodilation ability were simultaneously elevated whereas arterial stiffness was alleviated. The pulldown, ChIP and dual luciferase assays demonstrated that PURA could bind to the eNOS promoter and facilitate the transcription of eNOS. Under the conditions of presence or absence of CsV stimulation, overexpression or knockdown of PURA indicated that the effect of CsV on vascular endothelial function and eNOS was weakened following PURA gene silence, whereas overexpression of PURA gene could enhance the effect of CsV upregulating eNOS expression. CsV could promote NO release from endothelial cells by upregulating the expression of PURA/eNOS pathway, improve endothelial cell functions, enhance vasodilation capability, and alleviate vessel stiffness. The present study plays a role in offering a theoretical basis for the development and application of CsV in vascular function improvement, and it also provides a more comprehensive understanding of the pharmacodynamics of CsV.

Exposure Assessment of Heavy Metals Migrated from Glassware on the Korean Market (국내 유통 식품용 유리제의 중금속 노출 평가)

  • Kim, Eunbee;Hwang, Joung Boon;Lee, Jung Eun;Choi, Jae Chun;Park, Se-Jong;Lee, Jong Kwon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.1
    • /
    • pp.15-21
    • /
    • 2022
  • The purpose of our study was to investigate the migration level of lead (Pb), cadmium (Cd), and barium (Ba) from glassware into a food simulant and to evaluate the exposure of each element. The test articles were glassware, including tableware, pots, and other containers. Pb, Cd, and Ba were analysed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The analytical performance of the method was validated in terms of its linearity, limit of detection (LOD), limit of quantification (LOQ), recovery, precision, and uncertainty. The monitoring was performed for 110 samples such as glass cups, containers, pots, and bottles. a food simulant. Migration test was conducted at 25? for 24 hours in a dark place using 4% acetic acid as a food simulant. Based on the data; exposure assessment was carried out to compare the estimated daily intake (EDI) to the human safety criteria. The risk levels of Pb and Ba determined in this study were approximately 1.9% and 0.3% of the provisional tolerable weekly intake (PTWI) and tolerable daily intake (TDI) value, respectively, thereby indicating a low exposure to the population.

Application of Bender Elements in Consolidation, Tomography, and Liquefaction Tests (압밀, 토모그래피, 액상화시험에서 벤더엘리먼트의 적용)

  • Lee, Jong-Sub;Lee, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.43-54
    • /
    • 2006
  • The scope of this paper covers the applications of bender element tests in consolidation, tomography, and liquefaction. Loading and unloading time during consolidation are evaluated based on shear wave velocity. As S-wave velocity is dependent on effective stress, the loading step may be determined. However, cautions are required due to the different mechanism between the settlement and effective stress criteria. The stress history may be evaluated because the S-wave shows the cement controlled regime and stress controlled regimes. A fixed frame complemented with bender elements permits S-wave tomography The tomography system is tested at low confinement within a true triaxial cell. Results show that shear wave velocity tomography permits monitoring changes in the velocity field which is related to the average effective stress. To monitor the liquefaction phenomenon, S-wave trans-illumination is implemented with a high repetition rate to provide detailed information on the evolution of shear stiffness during liquefaction. The evolution of shear wave propagation velocity and attenuation parallel the time-history of excess pore pressure during liquefaction. Applications discussed in this paper show that bender elements can be a very effective tool for the detection of shear waves in the laboratory.

Fabrication of Radar Absorbing Shells Made of Hybrid Composites and Evaluation of Radar Cross Section (하이브리드 복합재를 이용한 레이더 흡수 쉘의 제작 및 레이더 단면적 평가)

  • Jung, Woo-Kyun;Ahn, Sung-Hoon;Ahn, Bierng-Chearl;Park, Seoung-Bae;Won, Myung-Shik
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.29-35
    • /
    • 2006
  • The avoidance of enemy's radar detection is very important issue in the modem electronic weapon system. Researchers have studied to minimize reflected signals of radar. In this research, two types of radar absorbing structure (RAS), 'C'-type shell and 'U'-type shell, were fabricated using fiber-reinforced composite materials and their radar cross section (RCS) were evaluated. The absorption layer was composed of glass fiber reinforced epoxy and nano size carbon-black, and the reflection layer was fabricated with carbon fiber reinforced epoxy. During their manufacturing process, undesired thermal deformation (so called spring-back) was observed. In order to reduce spring-back, the bending angle of mold was controlled by a series of experiments. The spring-back of parts fabricated by using compensated mold was predicted by finite element analysis (ANSYS). The RCS of RAS shells were measured by compact range and predicted by physical optics method. The measured RCS data was well matched with the predicted data.

Study on Detection of Oral Bacteria in the Saliva and Risk Factors of Adults (성인의 타액 내 구강세균 검출과 위험요인에 관한 연구)

  • Hong, Min-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5675-5682
    • /
    • 2014
  • As oral diseases are developed by mixed infections, not by any single element, an accurate analysis of the causative microorganisms related to dental caries and periodontal diseases is required. In this study, saliva was collected from selected adults to determine if the bacteria that are well known as the causative microorganisms of dental caries and periodontal diseases would be detected in their saliva. In addition, this study examined whether there would be any differences among adults according to age, smoking, drinking and presence or absence of diseases in the distribution of oral bacteria to determine the risk factors for oral bacteria. The study subjects were 120 adults ranging in age from 20 to 65 years. The experiment data was collected from March 15, to May 2014. The gDNA was collected from the saliva, and the distribution of bacteria for oral diseases was investigated by PCR. The findings of the study were as follows. S. mutans was detected from 72 adults, and P. intermedia was detected from 88 adults. Both bacteria were detected from 54 adults, and no oral bacteria was detected in 14 adults. An analysis of the risk factors of oral bacteria showed that smokers had a 2.8-fold higher risk of S. mutans than nonsmokers, and the former had a 3.5-fold higher risk of P. intermedia than the latter. Drinkers had a 3.3-fold higher risk of S. mutans than nondrinkers. Patients who suffered from systemic diseases had a 4.1-fold higher risk of P. intermedia than those with no diseases. Therefore, smoking, drinking and systemic diseases are factors that increase the likelihood of oral bacteria detection. More periodontal disease bacteria were detected from older adults, and more oral bacteria were found in adults who were in their 20s, as dental caries and periodontal diseases were more common in this age group. The adults in which oral bacteria were detected are more likely to have dental caries or periodontal diseases, and they should try to keep their mouth cavity clean and make regular visits to a dental clinic to prevent possible oral diseases.

Application of Dynamic Reaction Cell - Inductively Coupled Plasma Mass Spectrometry for the Determination of Calcium by Isotope Dilution Method (반응셀 유도결합플라스마 질량분석분석기를 이용한 칼슘 동위원소비율의 측정과 동위원소희석법의 적용)

  • Suh, Jungkee;Yim, Yonghyeon;Hwang, Euijin;Lee, Sanghak
    • Analytical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.417-426
    • /
    • 2002
  • Inductively Coupled Plasma Dynamic Reaction Cell Quadrupole Mass Spectrometry (ICP-DRC-QMS) was characterized for the detection of the six naturally occurring calcium isotopes. The effect of the operating conditions of the DRC system was studied to get the best signal-to-noise ratio. This experiment shows that the potentially interfering ions such as $Ar^+$, ${CO_2}^+$, ${NO_2}^+$, $CNO^+$ at the calcium masses m/z 40, 42, 43, 44 and 48 were removed by flowing $NH_3$ gas at the rate of 0.7 mL/min $NH_3$ as reactive cell gas in the DRC with a RPq value (rejection parameter) of 0.6. The limits of detection for $^{40}Ca$, $^{42}Ca$, $^{43}Ca$, $^{44}Ca$, and $^{48}Ca$ were 1, 29, 169, 34, and 15 pg/mL, respectively. This method was applied to the determination of calcium in synthetic food digest samples (CCQM-P13) provided by LGC for international comparison. The isotope dilution method was used for the determination of calcium in the samples. The uncertainty evaluation was performed according to the ISO/GUM and EURACHEM guidelines. The determined mean concentration and its expanded uncertainty of calcium was ($66.4{\pm}1.2$) mg/kg. In order to assess our method, two reference samples, Riverine Water reference sample (NRCC SLRS-3) and Trace Elements in Water reference sample (NIST SRM 1643d), were analyzed.