• Title/Summary/Keyword: electrostatic microactuator

Search Result 22, Processing Time 0.022 seconds

Position Control of Electrostatic Microactuator (정전형 마이크로 액튜에이터의 정밀위치제어)

  • 김승한;성우경;이효정
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1063-1066
    • /
    • 1995
  • This paper presents a precition control of an electrostatic microactuator. For the generation of sufficient electrostatic force, a donse comb-type electrostatic microactuator is designed and manufactureed via MEMS (micro-electro-mechanical systems) process. The nonlinear plant and the linear plant of the microactuator are established through the comparison of experimental results and simulation results. A feedforward controller is designed via MATLAB simulation using the inverse function of the nonlinear plant. the experiment for the precise position tracking control is undertaken to show the control efficiency of the proposed controller.

  • PDF

Laterally-Driven Electrostatic Repulsive-Force Microactuator (수평구동형 정전반발력 마이크로액추에이터)

  • Lee, Gi-Bang;Jo, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.424-433
    • /
    • 2001
  • We present a new electrostatic repulsive-force microactuator using a lateral repulsive force induced by an asymmetric distribution of electrostatic field. The lateral repulsive force has been characterized by a simple analytical equation, derived from a finite element simulation. A set of repulsive force polysilicon microactuators has been designed and fabricated by a 4-mask surface-micromachining process. Static and dynamic micromechanical behavior of the fabricated microactuators has been measured at the atmospheric pressure for a varying bias voltage. The static displacement of the fabricated microactuator, proportional to the square of the DC bias voltage, is obtained as 1.27 $\mu\textrm{m}$ for the DC bias voltage of 140V. The resonant frequency of the repulsive-force microactuator increases from 11.7 kHz to 12.7 kHz when the DC bias voltage increases from 60V to 140V. The measured quality-factor varies from 12 to 13 for the bias volatge range of 60V∼140V. The characteristics of the electrostatic repulsive-force have been discussed and compared and compared with those of the conventional electrostatic attractive-force.

Skewed Electrode Array(SEA) and Its Application as an Angular Microactuator (경사 전극 배열을 이용한 각도방향 마이크로 구동부 제작)

  • Choi, Seok-Moon;Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.2
    • /
    • pp.16-24
    • /
    • 2011
  • The angular electrostatic microactuator using skewed electrode array (SEA) scheme was proposed. The moving and fixed electrodes are arranged to make the driving force perpendicular to the rotating moment of arm. By changing the electrode overlap length, the magnitude of electrostatic force and stable displacement will be changed. In order to optimize the design, electrostatic FE analysis were carried out and the empirical force model was established for SEA. Simulation was performed to make the comparison between conventional actuators and SEA. The proposed SEA generates actuating torque 2 times greater than a comb-drive and stable actuator displacement 40% greater than a parallel plate type actuator. The angular electrostatic microactuator using skewed SEA scheme was designed and fabricated using SoG process.

  • PDF

Dual-Stage Servo System using Electrostatic Microactuator for Super-High Density HDD (정전형 마이크로 액추에이터를 이용한 초고밀도 HDD용 Dual-Stage 서보 시스템)

  • Kim, Seung-Han;Seong, U-Gyeong;Lee, Hyo-Jeong;Lee, Jong-Won;Choe, Jeong-Hun;An, Yeong-Jae;Jeon, Guk-Jin;Kim, Bong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.153-160
    • /
    • 1999
  • Dual-stage servo system for super-high density HDD has the chances of being composed of the coarse actuator(VCM) for track-seeking control and the fine actuator(microactuator) for-following control in near future. This paper presents the concept design of dual-stage servo system and the track-following control using an electrostatic microactuator for super-high density HDD. The electrostatic microactuator is designed and fabricated by MEMS(micro-electro-mechanical system) process. Both the nonlinear plant(voltage/displacement-to-electrostatic force) and the linear plant(electrostatic force-to-displacement) of the microactuator are established. Inverse function of the nonlinear plant is employed for a feedforward nonlinear compensator design. And feedforward control effect of this compensator is shown by time-domain experiments. A track-following feedback controller is designed using the feedback nonlinear compensator which is derived from the feedforward nonlinear compensator. The track-following control experiment is done to show the control efficiency of the proposed control system. And, excellent track-following control performance(2.21kHz servo-bandwidth, 7.51dB gain margin, $50.98^{\circ}$phase margin) is achieved by the proposed control system.

  • PDF

A Study of Position Control and Design for Microelectrostatic Mechanical Actuator (미세 작동기의 설계 및 위치 제어에 관한 연구)

  • Choi, Won-Seok;Jee, Tea-Young;Kim, Kun-Nyun;Park, Hyo-Derk;Heo, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.911-916
    • /
    • 2003
  • Microactuator is frequently used in some optical or electrical applications such as light modulators and spatial scanner devices. When microactuator is implemented, it should be operated at accurate positions proportional to input voltage. Therefore in order to obtain rapid responses and reduced errors, a position control technique is used. In the paper, design procedure for the mems actuator and a typical PID controller is adapted to improve performance of microactuator as well. Also electrostatic force for the torsional microactuator is calculated via well-known Hornbeck's method.

  • PDF

A Microcatuator for High-Density Hard Disk Drive Using Skewed Electrode Arrays (경사 전극 배열을 이용한 고밀도 하드 디스크의 마이크로 구동부 제작)

  • Choi, Seok-Moon;Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.1 no.2
    • /
    • pp.6-15
    • /
    • 2011
  • This paper reports the design and fabrication of a micro-electro-mechanical-system(MEMS)-based electrostatic angular microactuator for a dual-stage servo. The proposed actuator employs a novel electrode pattern named "skewed electrode array(SEA)" scheme. It is shown that SEA has better linearity than a parallel plate type actuator and stronger force than a comb-drive based actuator. The moving and the fixed electrodes are arranged to make the driving force perpendicular to the rotating moment of arm. By changing the electrode overlap length, the magnitude of electrostatic force and stable displacement will be changed. In order to optimize the design, an electrostatic FE analysis was carried out and an empirical force model was established for SEA. A new assembly method which will allow the active electrodes to be located beneath the slider was developed. The active electrodes are connected by inner and outer rings lifted on the base substrate, and the inner and outer rings are connected to platform on which the slider locates. Electrostatic force between active electrodes and platform can be used for exiting out of plane modes, so this provides the possibility of the flying height control. A microactuator that can position the pico-slider over ${\pm}0.5{\mu}m$ using under 20 volts for a 2 kHz fine-tracking servo was designed and fabricated using SoG process.

  • PDF

A Study on a Foxtail Electrostatic Microactuator with a High Resolution (고해상도의 Foxtail형 정전력 마이크로구동기에 대한 연구)

  • Kim Man-Geun;Kim Young-Yun;Jo Kyoung-Woo;Lee Jong-Hyun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1198-1201
    • /
    • 2005
  • A new foxtail actuator driven by V-shape beam deflection using electrostatic force has been designed, fabricated and characterized for nano-resolution manipulators. The proposed foxtail mechanism was implemented using a pair of electrostatic actuators and a pair of holding actuators, which was analyzed based on the electromechanically coupled motion of voltage - displacement relation. The proposed actuator was fabricated onto Silicon-on-Insulator (SOI) wafer and its stepping characteristics were measured by micro optical interferometer consisting of integrated micromirror and optical fiber. The fabricated foxtail microactuator was successfully operated from 1nm to 76nm, and the magnitude of step displacement was controllable up from 26nm/cycles to 53nm/cycle by changing the voltage.

  • PDF

Air Damping Evaluation for Laterally Driven Electrostatic Repulsive-Force Microactuators Using Creeping Flow Model (수평 구동형 정전 반발력 마이크로엑추에이터의 Creeping 유동 모델에 의한 공기 감쇠)

  • Lee, Gi-Bang;Seo, Yeong-Ho;Jo, Yeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.11
    • /
    • pp.581-588
    • /
    • 2001
  • This paper presents theoretical and experimental study on the quality-factor of the laterally oscillated electrostatic microactuator, driven by a lateral repulsive-force generated by the asymmetry of planar electric field. The quality-factor of the repulsive-force microactuator using a creeping flow model of the ambient air is evaluated. By filling the simulation results of damping force, we evaluate the dimensionless damping force, $\alpha$, thereby obtaining an analytical damping force, F, in the form of $F=\mu\; \alphaUL,\; where\; \mu,$ U and L denote the air viscosity, the velocity and the characteristic length of the movable electrodes. The measured quality-factor increases from 12 to 13 for the DC bias voltage increased from 60V to 140v. The theoretical quality-factor estimated from the creeping flow model increases from 14.9 to 18.7. Characteristics of quality-factor of the repulsive-force microactuator have been discussed and compared with those of the conventional attractive-force microactuator.

  • PDF

An Optical Microswitch Integrated with Silicon Waveguides, Micromirrors, and Electrostatic Touch-Down Beam Actuators (실리콘 광도파로, 미소거물 및 접촉식 정 전구동기가 집적된 광스위치)

  • Jin, Yeong-Hyeon;Seo, Gyeong-Seon;Jo, Yeong-Ho;Lee, Sang-Sin;Song, Gi-Chang;Bu, Jong-Uk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.12
    • /
    • pp.639-647
    • /
    • 2001
  • We present an integrated optical microswitch, composed of silicon waveguides, gold-coaled silicon micromirrors, and electrostatic contact actuators, for applications to the optical signal transceivers. For a low switching voltage, we modify the conventional curled electrode microactuator into a electrostatic microactuator with touch-down beams. We fabricate the silicon waveguides and the electrostatically actuated micromirrors using the ICP etching process of SOI wafers. We observe the single mode wave propagation through the silicon waveguide with the measured micromirror loss of $4.18\pm0.25dB$. We analyze major source of the micromirror loss, thereby presenting guidelines for low-loss micromirror designs. From the fabricated microswitch, we measure the switching voltage of 31.74V at the resonant frequency of 6.89kHz. Compared to the conventional microactuator, the present contact microactuator achieves 77.4% reduction of the switching voltage. We also discuss a feasible method to reduce the switching voltage to 10V level by using the electrode insulation layers having the residual stress less than 30MPa.

  • PDF

Dynamic Characterizations of a MEMS Microactuator for High Density Hard Disk Drive (고밀도 HDD 용 MEMS 마이크로 액추에이터의 동적 해석)

  • 김철순;전종업;정성환;최재준;민동기;김영훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.917-923
    • /
    • 2001
  • This paper presents the fabrication and testing results of a dual stage microactuator system for fine positioning of magnetic heads in hard disk drives. An electrostatic rotary microactuator was newly designed and fabricated. The microactuator was integrated into the head gimbal assembly of a disk drive system and its dynamic characteristics were investigated. Experimental results show that natural frequency and voltage gain of the microactuator are 4.3 KHz and 25 nm/V and the dual stage microactuator system achieves the tracking accuracy of 30 nm.

  • PDF