• Title/Summary/Keyword: electrostatic energy

Search Result 270, Processing Time 0.033 seconds

Monte Carlo Simulation of Phonon Transport in One-Dimensional Transient Conduction and ESD Event (1 차원 과도 전도와 정전기 방전 현상에 관한 포논 전달의 몬테 카를로 모사)

  • Oh, Jang-Hyun;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2165-2170
    • /
    • 2007
  • At nanoscales, the Boltzmann transport equation (BTE) can best describe the behavior of phonons which are energy carriers in crystalline materials. Through this study, the phonon transport in some micro/nanoscale problems was simulated with the Monte Carlo method which is a kind of the stochastic approach to the BTE. In the Monte Carlo method, the superparticles of which the number is the weighted value to the actual number of phonons are allowed to drift and be scattered by other ones based on the scattering probability. Accounting for the phonon dispersion relation and polarizations, we have confirmed the one-dimensional transient phonon transport in ballistic and diffusion limits, respectively. The thermal conductivity for GaAs was also calculated from the kinetic theory by using the proposed model. Besides, we simulated the electrostatic discharge event in the NMOS transistor as a two-dimensional problem by applying the Monte Carlo method.

  • PDF

A statistical estimation of electromagnetic detection rate caused by electrostatic discharge (정전기 방전에 의한 전자 간섭빈도의 통계적 추정)

  • 강인호;이창복;정옥현
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.10
    • /
    • pp.7-13
    • /
    • 1997
  • A modern electronic system located at a certain distance form the discharge may respond with unexpected sensitivity ot that phenomenon, even if the phenomenon is so slight as to have been ignored in the port. It has been found that electromagnetic wave energy is emitted as a results of this electrostatic discharge between metallic objects. In order to theoretically examine the peculiar phenomenon, we propose an analytical approach to model the indirect ESD effect. A soruce model is given here using the spark resistence presented by rompe-weizel. A model experiment for indirect eSD is also conducted to express ESD detection rate by the statistical estimation. We verify that the statistical estimations agree the theoretical curve resulted from the rompe-weisel resistence.

  • PDF

Theoretical Study of the N-(2,5-Methylphenyl)salicylaldimine Schiff Base Ligand: Atomic Charges, Molecular Electrostatic Potential, Nonlinear Optical (NLO) Effects and Thermodynamic Properties

  • Zeyrek, Tugrul C.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.4
    • /
    • pp.461-471
    • /
    • 2013
  • Optimized geometrical structure, atomic charges, molecular electrostatic potential, nonlinear optical (NLO) effects and thermodynamic properties of the title compound N-(2,5-methylphenyl)salicylaldimine (I) have been investigated by using ab initio quantum chemical computational studies. Calculated results showed that the enol form of (I) is more stable than keto form. The solvent effect was investigated for obtained molecular energies, hardneses and the atomic charge distributions of (I). Natural bond orbital and frontier molecular orbital analysis of the title compound were also performed. The total molecular dipole moment (${\mu}$), linear polarizability (${\alpha}$), and first-order hyperpolarizability (${\beta}$) were calculated by B3LYP method with 6-31G(d), 6-31+G(d,p), 6-31++G(d,p), 6-311+G(d) and 6-311++G(d,p) basis sets to investigate the NLO properties of the compound (I). The standard thermodynamic functions were obtained for the title compound with the temperature ranging from 200 to 450 K.

Beam Focusing Performance of Electrostatic Lens using SIMION Simulator (SIMION 시뮬레이터를 이용한 정전렌즈의 빔 집속 성능)

  • Oh, Maeng-Ho;Jeong, In-Sung;Lee, Jong-Hang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.128-133
    • /
    • 2009
  • Focused-ion-beam (FIB) system is capable of both machining and measuring in nano-scale; hence nano-scale focusing quality is important. This paper investigates design parameters of two electrostatic lenses in order to achieve the best ion beam focusing performance. Commercial SIMION simulator is used to optimize the dimensions of the condenser and objective lenses and investigate the influence of assembly error on focusing quality The simulation results show that the beam focusing quality is not influenced by angle deviation within ${\pm}0.02\;deg$ and geometrical eccentricity within ${\pm}50$ micrometers.

Molecular Dynamics Simulation Studies of the Effects of the Protonation State of Chitosan in Interactions with Bacterial Membranes (키토산의 양성자화가 세균막과의 상호작용에 미치는 효과 연구)

  • Truong, Gia Khuong;Yi, Myunggi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.6
    • /
    • pp.815-822
    • /
    • 2016
  • The cationic biopolymer chitosan has several applications in medicine. Chitosan is the deacetylated derivative of chitin, the second most abundant naturally occurring polymer. Recent studies have investigated the relationship between chitosan and antibacterial activity. However, the molecular interactions and mechanisms have not been detailed. This study used molecular dynamics simulations to study interactions between chitosan and anionic bacterial membranes (POPE-POPG) and electrically neutral non-bacterial membranes (POPC). We calculated the free energy using umbrella sampling to compare the interactions between membranes and chitosan in different protonation states. Fully protonated chitosan interacted most strongly with the bacterial membranes, but weakly with non-bacterial membranes. These results suggest that electrostatic interactions are the main mechanism of the antibacterial activity of chitosan, and they provide insights into the design of novel antibacterial and antimicrobial agents.

Thermodynamic Elucidation of Binding Isotherms for Hemoglobin & Globin of Human and Bovine upon Interaction with Dodecyl Trimethyl Ammonium Bromide

  • Bordbar, A.K.;Nasehzadeh, A.;Ajloo, D.;Omidiyan, K.;Naghibi, H.;Mehrabi, M.;Khajehpour, H.;Rezaei-Tavirani, M.;Moosavi-Movahedi, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1073-1077
    • /
    • 2002
  • Binding of dodecyl trimethylammonium bromide (DTAB) to human and bovine hemoglobin and globin samples has been investigated in 50 mM glycine buffer pH = 10, I = 0.0318 and 300 K by equilibrium dialysis and temperature scanning spectrophotometry techniques and method for calculation of average hydrophobicity. The binding data has been analyzed, in terms of binding capacity concept $({\theta})$, Hill coefficient (nH) and intrinsic Gibbs free energy of binding $({\Delta}Gbv).$ The results of binding data, melting point (Tm) and average hydrophobicity show that human hemoglobin has more structural stability than bovine hemoglobin sample. Moreover the results of binding data analysis represent the systems with two and one sets of binding sites for hemoglobin and globin, respectively. It seems that the destabilization of hemoglobin structure due to removal of heme group, is responsible of such behavior. The results indicating the removal of heme group from hemoglobin caused the depletion of first binding set as an electrostatic site upon interaction with DTAB and exposing the hydrophobic patches for protein.

Space Charge Analysis in Polymers Irradiated by Electron Beam (E-빔 조사에 의한 폴리머의 공간전하 해석)

  • Yun, Ju-Ho;Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.309-310
    • /
    • 2007
  • Spacecrafts such as most of commercial satellites that are operating in the geostationary orbit can be subjected to intense irradiation by charged particles. The surface made of dielectric materials can therefore become probable sites for damaging electrostatic discharges. Thanks to a specially equipped chamber, the spatial environment can be reproduced experimentally in the laboratory. In this paper, the behavior of high energy electrons injected in polymers such as PolyMethylMetaAcrylate (PMMA) and Kapton is studied. Results obtained by surface potential technique, pulse-electro acoustic device and a cell based on the split Faraday cup system are analyzed and discussed.

  • PDF

Soft Actuator Development for Artificial Muscle (인공근육개발을 위한 소프트 액추에이터 연구)

  • Kang, Gyeongji;Song, Kahye
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.17-22
    • /
    • 2021
  • Soft robot research has been actively conducted due to the advantages of soft materials that have less motion restrictions and higher energy efficiency compared to rigid robots. In particular, soft robots are being applied in more and more diverse fields, and the need for soft robots is increasing, especially when dealing with soft or deformable objects that rigid robots cannot perform. Various soft robots are being developed, and studies on artificial muscles with versatility, seamless integration with sensing, and self-healing capabilities are being proposed. In this study, we propose one of the most simple rectangular shaped HASEL (Hydraulically amplified self-healing electrostatic) actuators and compare the performance according to shape deformation such as the size or ratio of actuators and electrodes. Developing these actuators can be used in many ways for artificial muscles in soft robotics.

Fabrication and Its Characteristics of Ion Energy Spectrometer for Diagnostics of Plasma (플라즈마 진단을 위한 이온에너지 분석장치의 제작 및 특성 조사)

  • Kim, Kye-Ryung;Kim, Wan;Lee, Yong-Hyun;Kang, Hee-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.163-170
    • /
    • 1998
  • An ion energy spectrometer which has the $45^{\circ}$ parallel electrostatic deflection plate was designed and constructed for measuring ion temperature in high temperature plasma. The energy calibration and the energy resolution were studied in detail for a hydrogen ion at the $0.24{\sim}1.92\;keV$ energy using electrostatic accelerator with a duoplasmatron ion source. The voltage of the deflection plate was linearly increased for the decreased ion detector position at the constant ion energy and decreased for the increased ion energy at the fixed ion detector position. The inclination of the deflection plate voltage to the ion energy was between 0.92 and 1.61, and linearly decreased for the increased the ion detector position. The measured energy resolution, which is $4.2%\;{\sim}\;11.6%$ in this experiment region, was improved for the increased ion dector position and ion energy. The relative efficiency was increased for the decreased the ion detector position. The ion energy spectrum of the DC plasma in the multi-purpose plasma generator was measured using this equipment. The ion temperature was 203-205 eV at the discharge voltage 320 V, discharge current 1.7 A.

  • PDF

Diagnostics of Inductively Coupled $BCl_3/Ar$ Plasma Characteristics Using Quadrupole Mass Spectrometer (사중극자 질량 분석기를 이용한 $BCl_3/Ar$ 유도결합 플라즈마 특성 진단)

  • Kim, Gwan-Ha;Kim, Chang-Il
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.4
    • /
    • pp.204-208
    • /
    • 2006
  • In this study, we investigated the ion energy distributions in a chlorine based inductively coupled plasma by quadrupole mass spectrometer with an electrostatic ion energy analyzer. Ion energy distributions are presented for various plasma parameters such as $BCl_3/Ar$ gas mixing ratio, RF power, and process pressure. As the $BCl_3/Ar$ gas mixing ratio and process pressure decreases, and RF power increases, the saddle-shaped structures is enhanced. The reason is that there are ionized energy difference between $BCl_3$ and Ar, change of plasma potential, alteration of mean free path. and variety of ion collision in the sheath.