• Title/Summary/Keyword: electrostatic energy

Search Result 270, Processing Time 0.036 seconds

A Study on the Optimal Design of Soft X-ray Ionizer using the Monte Carlo N-Particle Extended Code (Monte Carlo N-Particle Extended 코드를 이용한 연X선 정전기제거장치의 최적설계에 관한 연구)

  • Jeong, Phil hoon;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.34-37
    • /
    • 2017
  • In recent emerging industry, Display field becomes bigger and bigger, and also semiconductor technology becomes high density integration. In Flat Panel Display, there is an issue that electrostatic phenomenon results in fine dust adsorption as electrostatic capacity increases due to bigger size. Destruction of high integrated circuit and pattern deterioration occur in semiconductor and this causes the problem of weakening of thermal resistance. In order to solve this sort of electrostatic failure in this process, Soft X-ray ionizer is mainly used. Soft X-ray Ionizer does not only generate electrical noise and minute particle but also is efficient to remove electrostatic as it has a wide range of ionization. X-ray Generating efficiency has an effect on soft X-ray Ionizer affects neutralizing performance. There exist variable factors such as type of anode, thickness, tube voltage etc., and it takes a lot of time and financial resource to find optimal performance by manufacturing with actual X-ray tube source. MCNPX (Monte Carlo N-Particle Extended) is used for simulation to solve this kind of problem, and optimum efficiency of X-ray generation is anticipated. In this study, X-ray generation efficiency was measured according to target material thickness using MCNPX under the conditions that tube voltage is 5 keV, 10 keV, 15 keV and the target Material is Tungsten(W), Gold(Au), Silver(Ag). At the result, Gold(Au) shows optimum efficiency. In Tube voltage 5 keV, optimal target thickness is $0.05{\mu}m$ and Largest energy of Light flux appears $2.22{\times}10^8$ x-ray flux. In Tube voltage 10 keV, optimal target Thickness is $0.18{\mu}m$ and Largest energy of Light flux appears $1.97{\times}10^9$ x-ray flux. In Tube voltage 15 keV, optimal target Thickness is $0.29{\mu}m$ and Largest energy of Light flux appears $4.59{\times}10^9$ x-ray flux.

Preparation and Electrochemical Characterization of ZrO2/Ti Electrode by ESD Coating Method (ESD 코팅법에 의한 ZrO2/Ti 전극의 제조 및 전기화학적 특성)

  • Kim, Han-Joo;Hong, Kyeong-Mi;Sung, Bo-Kyung;Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.95-99
    • /
    • 2008
  • This study has made the electrode that is coated zirconium oxide on the titanium by ESD(Electrostatic spray deposition) coating methode. It has investigated the effects of the etching method of a Ti substrate as the preparation, making of zirconium oxide film and electrochemical characteristics of the electrode that is etched on the titanium. The HCl etching develops a fine and homogeneous roughness on the Ti substrate. Fabrication and material properties of the metal oxide electrode, which is known to be so effective to generate ozone and hypochlorous acid (HOCl) as power oxidant, were studied. A proper metal oxide material is focus zirconium oxide through reference. A coating method to enhance the fabrication reproducibility of the zirconium oxide electrode was used ESD coating method by zirconium oxychloride. Zirconium oxide films on the Ti substrate were tested using SEM, XRD, Cyclic voltammetry.

The Status and Prospects of Accelerators in Radiation Industries (방사선 산업용 가속기의 현황과 전망)

  • Chai, Jong-Seo
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.101-110
    • /
    • 2012
  • This paper is described the review of several selected accelerators and the use of accelerators in various purposes. The electrostatic accelerators and RF accelerators have been developed before the second world war for the purpose of basic research of physics mainly. RF driven accelerators have been achieved higher energy and applied in medical and industrial use after 1980's. Accelerators have improved incorporating new technologies : axial and horizontal injection, stripping extraction, superconducting RF, computer control, superconducting magnet etc.. Also recent key technologies as BT and NT make the expansion of applications of the accelerators.

Simultaneous Removal Characteristics of Particulate and Elemental Mercury in Convergence Particulate Collector (융합형여과집진장치에서의 먼지입자와 원소수은의 제거 성능 특성)

  • Park, Young Ok;Jeong, Ju Yeong
    • Particle and aerosol research
    • /
    • v.6 no.4
    • /
    • pp.173-183
    • /
    • 2010
  • The high temperature pleated filter bags which were used during this study were made of pleated nonwoven fabric of heat and acid resistant polysulfonate fibers which can withstand the heat up to $300^{\circ}C$ and have a filtration area which is 3 to 5 times larger than the conventional round filter bags. Cartridge module packed with 3 kind of the sulfur impregnated activated-carbon based sorbents were inserted in the inner of the pleated filter bag. This type of pleated filter bag was designed to remove not only the particulate matter but also the gaseous elemental mercury. The electrostatic precipitator part can enhance the particulate removal efficiency and reduce the pressure drop of the pleated filter bag by agglomerated particles to form a more porous dust layer on the surface of the pleated bag which is increased the filter bag cleaning efficiency. In addition, the most of particles are separated from the flue gas stream through the cyclone and the electrostatic precipitator part which were installed at the lower part and main body part of the convergence particulate collector, respectively. Thus reduce particulate loading of the high temperature pleated filter bags were applied in this study to analyze the removal characteristics of particulate matter and gaseous elemental mercury.

Selective leaching of valuable metals (Au, Ag etc.) from waste printed circuit boards (PCB)

  • Oh, Chi-Jung;Lee, Sung-Oh;Song, Jin-Kon;Kook, Nam-Pyo;Kim, Myong-Jun
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.193-197
    • /
    • 2001
  • This study was carried out to recover gold, silver and other valuable metals from the printed circuit boards (PCB) of waste computers. PCB samples were crushed to under 1mm by a shredder and initially separated into 30% conducting and 70% non-conducting materials by an electrostatic separator. The conducting materials, which contained the valuable metals, were then used as the feed material for magnetic separation where it was found that 42% was magnetic and 58% non- magnetic. The non-magnetic materials contained 0.227mg/g Au and 0.697mg/g Ag. Further leaching of the non-magnetic component using 2.0M sulfuric acid and 0.2M hydrogen peroxide at 85$^{\circ}C$ extracted more than 95% copper, iron, zinc, nickel and aluminium. Au and Ag were not extracted in this solution, however, more than 95% of Au and 100% of Ag were selectively leached with a mixed solvent (0.2M ammonium thiosulfate, 0.02M copper sulfate, 0.4M ammonium hydroxide). Finally, the residues were reacted with a NaCl solution to leach out Pb while sulfuric acid was used to leach out Sn. Recoveries reached 95% and 98% in solution, respectively.

  • PDF

A Characteristic Analysis of Physical, Chemical and Electrical Property for Bunker C Fly Ash (Bunkder C유 회분의 물리적, 화학적, 전기적 특성분석)

  • 이재근;이정언;안영철
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.04a
    • /
    • pp.88-96
    • /
    • 1996
  • The characteristic analysis of fly ash generated from a fired power plant using bunker-C oil has been investigated. Ash size distribution by an optical microscopy with image processing technique, morphological shape by a scanning electron microscope(SEM) and microscope, chemical composition by the inductively coupled plasma emission spectrometry(ICP), and resistivity measurement as a function of temperature and moisture content by the resistivity meter are performed. A study of physical, chemical and electrical characteristics of bunker-C fly ash plays an important role of improving the performance of an electrostatic precipitator and protecting air pollution. The samples of bunker-C fly ash for analysis were collected from the electrostatic precipitator hopper of Ulsan Power Plant Unit 1 and Pusan Power Plant Unit 1. Mass median diameter(MMD) of bunker-C fly ash was measured 12.7${\mu}{\textrm}{m}$, while MMD of fly ash generated from the mixture of bunker-C oil(40%) and domestic anthracitic coal(60%) was 25.7${\mu}{\textrm}{m}$. The morphological structure of bunker-C fly ash consisted of fine particles of non-spherical shape. The primary chemical components of bunker-C fly ash were composed of SiO2(2.36%), Al2O3(4.91%), Fe2O3(14.33%) and C(11.84%). Resistivity of bunker-C fly ash was found to be increased with increasing temperature at the range of 100~15$0^{\circ}C$ and was measured 103~104 ohm-cm.

  • PDF

Evaluation of Filter Media for Use in Alpha Measurement of Radon Progeny (라돈 자핵종의 알파 측정용 여과지 매질의 평가)

  • Seo, Kyung-Won;Knutson Earl O.
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.1
    • /
    • pp.31-41
    • /
    • 1992
  • A study for the evaluation of selected filter media that need further characterization particularily in the context of alpha measurements of radon progeny has been carried out by investigating physical characteristics and using the alpha spectroscopy. Physical characteristics was investigated by electrostatic charging and mechanical strength of filters, and then pressure drop before and after sampling was tested. Alpha spectroscopy was used to analyze the energy spectra from the deposition of radon progeny into filters. The results of the assessment showed that the newer filter types do not have a great advantage over the 'old standard' Millipore type AA. But Metricel DM-800 is recommended for those situations where electrostatic charging is a problem. Also this method will be used more effective for the evaluation of new developing filters in future.

  • PDF

Bedding Fabric Performance Using Polyester, Tencel and Cotton MVS Blended Spun Yarns (PET, Tencel, Cotton MVS 혼방사로 제직된 침구용 직물의 성능평가)

  • Sa, A-Na;Lee, Jung Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.1
    • /
    • pp.17-27
    • /
    • 2017
  • This study evaluated the performance of bedding fabrics consisting of warp (150d/144f, polyester) and weft (polyester, Tencel and cotton MVS blended spun yarn) with blend ratio of weft. We measured electrostatic propensity, moisture properties, pilling properties and mechanical properties of the fabrics for this study. F-P fabric showed outstanding moisture properties and pilling properties. However, tensile properties and electrostatic propensity were relatively inferior to other characteristic values. Significant static electricity may make F-P fabric uncomfortable. F-P7C3 fabric showed outstanding moisture properties and pilling properties. Static electricity may make F-P7C3 fabric uncomfortable; in addition, F-P5C5 fabric showed outstanding moisture properties and pilling properties. Rough and stiff hand feel were expected to increase because tensile properties decreased and surface properties increased. F-C fabric showed outstanding pilling properties and electrostatic propensity. However, it showed inferior moisture control properties. F-P5T4C1 fabric showed outstanding moisture properties, pilling properties and electrostatic propensity. Several properties are outstanding; however, the hand feels are very rough and stiff from bending. The water evaporation and static electricity increased with increasing polyester content. As the content of cotton increased, tensile properties were improved. However, water evaporation and static electricity decreased. The addition of Tencel increased the thickness and compression energy so that it exhibited a soft characteristic upon compression and an excellent moisture control properties, but the surface became somewhat coarse.

Study on an Electrostatic Deflector for Ultra-miniaturized Microcolumn to Realize sub-10 nm Ultra-High Resolution and Wide Field of View (10 nm 이하 초고해상도와 광폭 관측시야를 구현하기 위한 극초소형 마이크로컬럼용 정전형 디플렉터 연구)

  • Lee, Hyung Woo;Lee, Young Bok;Oh, Tae-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.29-37
    • /
    • 2021
  • A 7 nm technology node using extreme ultraviolet lithography with a wavelength of 13.5 nm has been recently developed and applied to the semiconductor manufacturing process. Furthermore, the development of sub-3 nm technology nodes continues to be required. In this study, design factors of an electrostatic deflector for an ultra-miniaturized microcolumn system that can realize an electron wavelength of below 1.23 nm with an acceleration voltage of above 1 eV were investigated using a three-dimensional simulator. Particularly, the optimal design of the electrostatic octupole floating deflector was derived by optimizing the design elements and improving the driving method of the 1 keV low energy ultra-miniaturized microcolumn deflector. As a result, the entire wide field of view greater than 330 ㎛ at a working distance of 4 mm was realized with an ultra-high-resolution electron beam spot smaller than 10 nm. The results of this study are expected to be a basis technology for realizing a wafer-scale multi-array microcolumn system, which is expected to innovatively improve the throughput per unit time, which is the biggest drawback of electron beam lithography.

Introduction to research and current trend about nanogenerator (나노제너레이터의 연구소개 및 최근 기술동향)

  • Kim, Sang-Woo;Kim, Seongsu;Yoon, Hong Joon;Ryu, Hanjun
    • Vacuum Magazine
    • /
    • v.1 no.4
    • /
    • pp.14-20
    • /
    • 2014
  • Since recent electronics technologies have been developed and they tend to spend huge amount of electrical power, self-powered electronics have been paid attention worldwide. To realize self-powered electronics, energy harvesting technology, which generally converts ambient energy into electrical energy, has to be introduced. Among numerous energy sources, mechanical, thermal, and electrostatic event would be of broad interest in field of energy harvesting. Here, this article introduces the promising alternative energy concepts of nanogenerator including piezoelectric, triboelectric, and hybrid types. With these nanogenerators, we are able to apply onto not only self-powered system, but expect these open green energy market.