• Title/Summary/Keyword: electronic warfare

Search Result 178, Processing Time 0.02 seconds

Development of High Density High Voltage Power Supply for Traveling Wave Tubes (진행파관(TWT) 구동용 고밀도 고전압 전원공급기 개발)

  • Park Y.J;Lee K.S;Lyu S.C.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.256-259
    • /
    • 2003
  • In this paper describes the development testing results of high density High Voltage Power Supply(HVPS) that employ microwave TWTs. The HVPS consist of number of modules connected in series. A new design that adapt resonant circuit and high density pulse transformer to the high voltage modules makes the HVPS much more reliable. Also High voltage Solid-State modulation using fast switching devices(FET's) and the test results of modulator modules development are represented.

  • PDF

Development of Control and Analysis Software for Electronic Warfare Test System Using Reverse Engineering of Network Protocol (프로토콜 역설계를 이용한 전자전시험장비 제어 및 신호분석 소프트웨어 개발)

  • Jung, In-Hwa
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.58-66
    • /
    • 2008
  • In this paper, we have proposed a method and procedure which can find out the unknown network protocol. Although it seems to be difficult to identify the protocol, we can find out the rule in the packet according to the method we have proposed. We have to recognize functions of the system and make the list of events first. Then we capture the network packet whenever the event are occurred. The captured packets are examined by means of the method that is finding repeated parts, changed parts according to the input value, fixed parts and changed parts according to regular rules. Finally we make the test program to verify the protocol. We applied this method and procedure to upgrade Electronic Warfare Test System which is operated by ADD. We have briefly described the redesign of control and analysis software for Electronic Warfare Test System

An Analysis of Spot Noise Jamming Technique in a Monopulse Sensor (모노펄스 센서에 대한 점 잡음 재밍 기법의 효과도 분석)

  • Lee, Seong-Hyeon;Jeong, Nam-Hoon;Choi, Young-Ik;Hong, Sang-Guen;Oh, Seung-Sup;Na, In-Seok;Lee, Chang-Hoon;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.237-245
    • /
    • 2017
  • In this paper, a monopulse sensor which determines a target location using amplitude-comparison monopulse technique is presented. This sensor can allow the missile to track the target when additional jamming signals are not presented. Then, we applied the spot noise jamming technique to the monopulse sensor. Based on the simulation results, we can effectively figure out the performances of the spot noise jamming technique for the monopulse sensor in various jamming scenarios.

A Study on the Accuracy Enhancement Using the Direction Finding Process Improvement of Ground-Based Electronic Warfare System (지상용 전자전장비의 방향 탐지 프로세스 개선을 통한 정확도 향상에 관한 연구)

  • Chin, Huicheol;Kim, Seung-Woo;Choi, Jae-In;Lee, Jae-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.627-635
    • /
    • 2017
  • Modern warfare is gradually changing into a network war, and information electronic warfare is also progressing. In modern war, electronic warfare is all military activity concerned with electromagnetic field use, such as signal collecting, communication monitoring, information analysis, and electronic attack. The one key function of signal collecting for enemy signal analysis, direction finding, collects the signal radiated from enemy area and then calculates the enemy direction. This paper examined the Watson-Watt algorithm for an amplitude direction finding system and CVDF algorithm for phase direction finding system and analyzed the difference in the direction finding accuracy between in the clean electromagnetic field environment and in the real operating field environment of electronic warfare system. In the real field, the direction finding accuracy was affected by the reflected field from the surrounding obstacles. Therefore, this paper proposesan enhanced direction finding process for reducing the effect. The result of direction finding by applying the proposed process was enhanced above $1.24^{\circ}$ compared to the result for the existing process.

Analysis on the Distribution of RF Threats Using Unsupervised Learning Techniques (비지도 학습 기법을 사용한 RF 위협의 분포 분석)

  • Kim, Chulpyo;Noh, Sanguk;Park, So Ryoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.346-355
    • /
    • 2016
  • In this paper, we propose a method to analyze the clusters of RF threats emitting electrical signals based on collected signal variables in integrated electronic warfare environments. We first analyze the signal variables collected by an electronic warfare receiver, and construct a model based on variables showing the properties of threats. To visualize the distribution of RF threats and reversely identify them, we use k-means clustering algorithm and self-organizing map (SOM) algorithm, which are belonging to unsupervised learning techniques. Through the resulting model compiled by k-means clustering and SOM algorithms, the RF threats can be classified into one of the distribution of RF threats. In an experiment, we measure the accuracy of classification results using the algorithms, and verify the resulting model that could be used to visually recognize the distribution of RF threats.

Advancements in Drone Detection Radar for Cyber Electronic Warfare (사이버전자전에서의 드론 탐지 레이다 운용 발전 방안 연구)

  • Junseob Kim;Sunghwan Cho;Pokki Park;Sangjun Park;Wonwoo Lee
    • Convergence Security Journal
    • /
    • v.23 no.3
    • /
    • pp.73-81
    • /
    • 2023
  • The progress in science and technology has widened the scope of the battlefield, leading to the emergence of cyber electronic warfare that exploits electromagnetic waves and networks. Drones have become more important due to advancements in battery technology and navigation systems. Nevertheless, tackling drone threats comes with its own set of difficulties. Radar plays a vital role in detecting drones, offering long-range capabilities and independence from weather conditions. However, the battlefield presents unique challenges like dealing with high levels of signal noise and ensuring the safety of the detection assets. This paper proposes various approaches to improve the operation of drone detection radar in cyber electronic warfare, with a focus on enhancing signal processing techniques, utilizing low probability of interception (LPI) radar, and implementing optimized deployment strategies.

A Kernel Density Signal Grouping Based on Radar Frequency Distribution (레이더 주파수 분포 기반 커널 밀도 신호 그룹화 기법)

  • Lee, Dong-Weon;Han, Jin-Woo;Lee, Won-Don
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.124-132
    • /
    • 2011
  • In a modern electronic warfare, radar signal environments become more denser and complex. Therefor the capability of reliable signal analysis techniques is required for ES(Electronic warfare Support) system to identify and analysis individual emitter signals from received signals. In this paper, we propose the new signal grouping algorithm to ensure the reliable signal analysis and to reduce the cost of the signal processing steps in the ES. The proposed grouping algorithm uses KDE(Kernel Density Estimator) and its CDF(Cumulative Distribution Function) to compose windows considering the statistical distribution characteristics based on the radar frequency modulation type. Simulation results show the good performance of the proposed technique in the signal grouping.

Frequency Hopping Signal Analysis Using High-Speed Parallel Processing (고속 병렬처리 기법을 활용한 주파수 도약 신호 분석)

  • Lee, Kwang-Yong;Yoon, Hyun-Chul;Lee, Hyeon-Hwi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.251-254
    • /
    • 2014
  • In this paper, we studied a technique of extracting a Frequency Hopping(FH) signal for analysis using high-speed parallel processing structure. Unlike fixed frequency signal, FH signal is difficult to detect and analyze because FH systems use many random frequencies instead of a single carrier frequency. To solve this problem we designed a method that analyze FH signal using high-speed parallel processing. In order to apply parallel processing, we use CUDA using GPU and compare single processing with prarallel processing. As a result, using CUDA on a GPU is about 8.53 times faster than single processing.

Phase Noise Analysis of 2.4 GHz PLL using SPD (SPD를 이용한 2.4 GHz PLL의 위상잡음 분석)

  • Chae, Myeoung-ho;Kim, Jee-heung;Park, Beom-jun;Lee, Kyu-song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.379-386
    • /
    • 2016
  • In this paper, phase noise analysis result for 2.4 GHz PLL(phase locked loop) using SPD(sample phase detector) is proposed. It can be used for high performance frequency synthesizer's LO(local oscillator) to extend output frequency range or for LO of offset PLL to reduce a division rate or for clock signal of DDS(direct digital synthesizer). Before manufacturing, theoretical estimation of PLL's phase noise performance should be performed. In order to calculate phase noise of PLL using SPD, Leeson model is used for modeling phase noise of VCO(voltage controlled oscillator) and OCXO(ovened crystal oscillator). After theoretically analyzing phase noise of PLL, optimized loop filter bandwidth was determined. And then, phase noise of designed loop filter was calculated to find suitable OP-Amp. Also, the calculated result of phase noise was compared with the measured one. The measured phase noise of PLL was -130 dBc/Hz @ 10 kHz.

Transmission Modeling and Verification for the Inverse Estimation of Electronic Warfare Threats (전자전 위협체 역추적을 위한 송수신 모델링 및 검증)

  • Park, So Ryoung;Jeong, Hoe Chang;Kwon, Jae Wan;Noh, Sanguk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.4
    • /
    • pp.112-123
    • /
    • 2017
  • Research for the inverse estimation of RF threats and the efficient electronic attack based on the parameters of the electronic information has been active in the electronic warfare (EW) situations. In this paper, an EW transmission simulator is constructed from the modeling of radar threats, EW receivers, and propagation environments with the collected electronic information in order to verify the performance of the inverse estimation algorithm in various and practical EW situations. In simulation results, we show that the range tracking error and angle tracking error are produced within ten meters and one degree, respectively. And also, we show that the changing relations between the angle tracking error and the parameters of the monopulse angle tracking radar such as the beamwidth and squint angle in simulation results correspond with those in the theoretical modeling. Accordingly, the constructed EW simulator can be used to observe the modifying characteristics of the electronic information in transmission environments, and then, to evaluate the performance of the inverse estimation system in various EW situations.