• Title/Summary/Keyword: electronic structures calculation

Search Result 75, Processing Time 0.025 seconds

A Study of Mg Capping Inside p-tert-butylcalix[4]arene Adsorbed on a Ge(100) Surface

  • Shin, Minjeong;Lee, Myungjin;Lee, Hangil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.135-135
    • /
    • 2013
  • The electronic and adsorption structures of Mg and p-tert-butylcalix[4]arene (p-TBCA) adsorbed onto a Ge(100) surface under a variety of sample conditions were characterized using high-resolution photoemission spectroscopy (HRPES) and their corresponding DFT calculation results. Interestingly, after 0.10 ML p-TBCA molecules had been adsorbed onto a Ge(100) surface, subsequent adsorption of a small amount of metallic Mg (~0.10 ML) resulted in the formation of a capped structure inside the pre-adsorbed p-TBCA molecules. The adsorption structures resulting from further deposition of Mg (~0.50 ML) onto the Ge(100) surface were monitored based on the surface charge state and Mg 2s core level spectrum. Work function measurements clearly indicated the electronic structures of the Mg and p-TBCA adsorbed onto the Ge(100) surface. Moreover, we confirmed that three different adsorption structures are experimentally favorable at room temperature through DFT calculation results.

  • PDF

Atomistic simulation of surface passivated wurtzite nanowires: electronic bandstructure and optical emission

  • Chimalgi, Vinay U.;Nishat, Md Rezaul Karim;Yalavarthi, Krishna K.;Ahmed, Shaikh S.
    • Advances in nano research
    • /
    • v.2 no.3
    • /
    • pp.157-172
    • /
    • 2014
  • The three-dimensional Nano-Electronic Modeling toolkit (NEMO 3-D) is an open source software package that allows the atomistic calculation of single-particle electronic states and optical response of various semiconductor structures including bulk materials, quantum dots, impurities, quantum wires, quantum wells and nanocrystals containing millions of atoms. This paper, first, describes a software module introduced in the NEMO 3-D toolkit for the calculation of electronic bandstructure and interband optical transitions in nanowires having wurtzite crystal symmetry. The energetics (Hamiltonian) of the quantum system under study is described via the tight-binding (TB) formalism (including $sp^3$, $sp^3s^*$ and $sp^3d^5s^*$ models as appropriate). Emphasis has been given in the treatment of surface atoms that, if left unpassivated, can lead to the creation of energy states within the bandgap of the sample. Furthermore, the developed software has been validated via the calculation of: a) modulation of the energy bandgap and the effective masses in [0001] oriented wurtzite nanowires as compared to the experimentally reported values in bulk structures, and b) the localization of wavefunctions and the optical anisotropy in GaN/AlN disk-in-wire nanowires.

Calculation on Electronic State of Y-doped ZnO (Y이 도핑된 ZnO의 전자상태 계산)

  • Lee, Dong-Yoon;Lee, Won-Jae;Song, Jae-Sung;Koo, Bo-Kun;Kim, Hyun-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.172-173
    • /
    • 2005
  • The electronic state of ZnO doped with Y was calculated using the density functional theory. In this study, the program used for the calculation on theoretical structures of ZnO and doped ZnO was Vienna Ab-initio Simulation Package (VASP), which is a sort of pseudo potential method. The detail of electronic structure was obtained by the descrite variational $X\alpha$ (DV-$X\alpha$) method, which is a sort of molecular orbital full potential method. The optimized crystal structures obtained by calculations were compared to the measured structure. The density of state and energy levels of dopant elements was shown and discussed in association with optical properties.

  • PDF

Energy band structure calculation of crystalline solids using meshfree methods (무요소법을 이8한 결정고체의 에너지 띠 구조 계산)

  • 전석기;임세영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.623-628
    • /
    • 2002
  • A meshfree formulation for the calculation of energy band structure is presented. The conventional meshfree shape function is modified to handle the periodicity of Bravais lattice, and applied to the calculation of real-space electronic-band structure. Numerical examples include the Kronig-Penney model potential and the empirical pseudopotentials of diamond and zinc-blonde semiconductors. Results demonstrate that the meshfree method be a promising one as a real-space technique for the calculations of diverse physical band structures.

  • PDF

Electronic State of ZnO doped with Al, Ga and In, Calculated by Density Functional Theory (범함수궤도법을 이용하여 계산한 Al, Ga, In이 도핑된 ZnO의 전자상태)

  • Lee, Dong-Yoon;Lee, Won-Jae;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.218-221
    • /
    • 2004
  • The electronic state of ZnO doped with Al, Ga and In, which belong to III family elements in periodic table, was calculated using the density functional theory. In this study, the program used for the calculation on theoretical structures of ZnO and doped ZnO was Vienna Ab-initio Simulation Package (VASP), which is a sort of pseudo potential method. The detail of electronic structure was obtained by the describe variational $X{\alpha}(DV-X{\alpha})$(DV-Xa) method, which is a sort of molecular orbital full potential method. The optimized crystal structures obtained by calculations were compared to the measured structure. The density of state and energy levels of dopant elements was shown and discussed in association with properties.

  • PDF

B20 Crystal Structure and Electromagnetic Property of MnGe and MnSi (B20 결정구조와 MnGe와 MnSi의 전자구조 및 자기적 특성)

  • Jeong, Tae Seong
    • Korean Journal of Materials Research
    • /
    • v.29 no.8
    • /
    • pp.477-482
    • /
    • 2019
  • The magnetic properties and electronic structures of the B20 crystal structure MnGe and MnSi were investigated using the density functional theory with local density approximation. The low symmetry of the B20 crystal structure plays a very important role to make electromagnetic characteristics of these materials. The important result of the calculations is that it can be observed the appearance of a pair of gaps in the density of states near the Fermi level in both compounds. These features are results from d-band splitting by the low symmetry of the crystal field from B20 crystal structure. It can be seen that there is half-metallic characteristics from the density of states in both compounds. The calculation shows that the value of magnetic moment of MnGe is 5 times bigger than that of MnSi even though they have same crystal structure. The electronic structures of paramagnetic case have a very narrow indirect gap just above the Fermi level in both compounds. These gaps acquire some significance in establishing the stability of the ferromagnetic states within the local density approximation. Calculation shows that the Mn 3d character dominates the density of states near the Fermi level in both materials.

Investigation on the Origin of Band Gap in Heusler Alloy Co2MnSi through First-principles Electronic Structure Calculation (호이슬러 화합물 Co2MnSi에서 전자구조계산을 통한 에너지 간격의 원인에 대한 고찰)

  • Kim, Dong-Chul;Lee, Jae-Il
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.6
    • /
    • pp.201-205
    • /
    • 2008
  • In order to investigate the origin of the band gap in the half-metallic Heusler alloy, $Co_2MnSi$, through the electronic structure calculation, we have calculated the electronic structures for the compounds consisted of parts of Heusler structures, i.e. zinc-blende CoMn, half-Heusler CoMnSi, and artificial $Co_2Mn$, using the full-potential first-principles band calculation method. By investigating the band hybridization and energy gap for the calculated density of states for these compounds, we found that the the origin of the band gap is not consistent with the explanation discussed by Galanakis et al. We have also discussed the magnetism for these compounds by the calculated number of majority- and minority-spin electrons.

The Electronic Structure Calculations for Hexagonal Multiferroic Materials (다중강전자 상태를 가진 육방정계물질의 전자구조 계산)

  • Park, Key-Taeck
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.152-155
    • /
    • 2007
  • We have studied electronic structures and magnetic properties of $YMnO_3,\;ScManO_3$ with hexagonal structure using Full Potential Linearized Augmented Plane Wave (FLAPW) method based on LSDA method. LSDA calculation results show that multiferroic $YMnO_3$ shows energy gap due to hexagonal symmetry and magnetic interaction. Because of insulating gap and small Y ion, $YMnO_3$ shows magnetic and ferroelectric state. However, $ScMnO_3$ does not show the energy gap because of strong hybridization of Mn-O for LSDA calculation. We confirmed the stability of multiferroic state for $YMnO_3\;and\;ScManO_3$ using total energy calculations. The antiferromagnetic and ferroelectric states have the lowest energy about 100 meV.

DFT Calculated Structures and IR Spectra of the Conformers of para-Bromocalix[4]aryl Derivatives

  • Ahn, Sangdoo;Lee, Dong-Kuk;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3514-3520
    • /
    • 2014
  • Molecular structures of the various conformers of para-bromocalix[4]aryl derivatives 1-4 were optimized using the DFT B3LYP calculation method. The total electronic and Gibbs free energies and normal vibrational frequencies of the different structures (CONE, partial cone (PACO), 1,2-Alternate(1,2-A) and 1,3-Alternate(1,3-A)) were calculated from the four kinds of para-bromocalix[4]aryl derivatives. The B3LYP/6-31G(d,p) calculations suggested the following: 1(PACO) is the most stable among four conformers of 1; 2(CONE) is the most stable among five conformers of 2; 3(PACO) is the most stable among four conformers of 3; 4(1,3-A) is the most stable among four conformers of 4. All the most stable structures optimized by the B3LYP calculation method were in accordance with the experimental crystal structures of 1-4. The calculated IR spectra of the various conformers (CONE, PACO, 1,2-A and 1,3-A) of 1-4 were compared.

First-principles Predictions of Structures and Piezoelectric Properties of PbTiO3 Single Crystal

  • Kim, Min Chan;Lee, Sang Goo;Joh, Cheeyoung;Seo, Hee Seon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.29-32
    • /
    • 2016
  • Using the various exchange-correlation functionals, such as LDA, GGA-PBE, GGA-PBEsol and GGA-AM05 functionals, first principle studies were conducted to determine the structures of paraelectric and ferroelectric PbTiO3. Based on the structures determined by the various functionals, the piezoelectric properties of PbTiO3 are predicted under the density-functional perturbation theory (DFPT). The present prediction with the various GGA functionals are closer to the experimental findings compared to the LDA values. The present DFT calculations using the GGA-PBEsol functional estimate the experimental data more reasonably than the conventional LDA and GGA fucntionals. The GGA-AM05 functional also predicts the experimental data as well as the GGA-PBEsol. The piezoelectric tensor calculated with PBEsol is relatively insensitive to pressure.