• Title/Summary/Keyword: electronic structures

Search Result 1,792, Processing Time 0.035 seconds

A numerical tool for thermo-mechanical analysis of multilayer stepped structures

  • Bagnoli, Paolo Emilio;Girardi, Maria;Padovani, Cristina;Pasquinelli, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.757-774
    • /
    • 2013
  • An integrated simulation tool for multilayer stepped pyramidal structures is presented. The tool, based on a semi-analytical mathematical strategy, is able to calculate the temperature distributions and thermal stresses at the interfaces between the layers of such structures. The core of the thermal solver is the analytical simulator for power electronic devices, DJOSER, which has been supplemented with a mechanical solver based on the finite-element method. To this end, a new ele-ment is proposed whose geometry is defined by its mean surface and thickness, just as in a plate. The resulting mechanical model is fully three-dimensional, in the sense that the deformability in the direction orthogonal to the mean surface is taken into account. The dedicated finite element code developed for solving the equilibrium problem of structures made up of two or more superimposed plates subjected to thermal loads is applied to some two-layer samples made of silicon and copper. Comparisons performed with the results of standard finite element analyses using a large number of brick elements reveal the soundness of the strategy employed and the accuracy of the tool developed.

Development of Outdoor Augmented Reality Based 3D Visualization Application for Realistic Experience of Structures (구조물 실감 체험을 위한 야외 증강현실 기반의 3D 시각화 어플리케이션 개발)

  • Lee, Young-Jae;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.305-310
    • /
    • 2015
  • Recently, as AR(Augmented Reality) technology develops, it is used in field of diverse industry and specially affects structures and human interaction in field of architecture. This paper proposes 3D visualization application for realistic experience of structures by using outdoor AR technology. Proposed application visualizes structures such as high buildings, bridges, ships, and so on to be constructed in future, considering ambient environment by using outdoor AR technology, provides precisely user structures after completing construction and offers more realistic information and immersion as compared with previous methods.

Optimization of Grating Structures in Complex-Coupled MQW DFB Lasers with Absorptive Gratings (흡수 회절격자를 가지는 복소결합 다중양자우물 DFB 레이저의 회절격자 구조의 최적화)

  • Cho, Sung-Chan;Lee, Dong-Chan;Kim, Boo-Gyoun
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.80-91
    • /
    • 1999
  • We present various optimal grating structures which give the low threshold gain, good modulation characteristics, small effective linewidth enhancement factor, and large fabrication tolerance in complex-coupled MQW DFB lasers with absorptive gratings. To obtain these, we calculate the complex coupling coefficients using the extended additional layer method and the threshold gain including the modal loss in the absorptive grating region for rectangular and trapezoidal gratings. Based on the comparison of the results for various possible absorptive grating structures, the design guidelines are presented to obtain the low threshold gain or large fabrication tolerance. Among the grating structures studied, the double grating structure consisting of the absorptive grating on the index grating has the largest fabrication tolerance for the threshold gain and the coupling strength. The fabrication tolerance for the coupling ratio is very large for all the grating structures studied.

  • PDF

Atomistic simulation of surface passivated wurtzite nanowires: electronic bandstructure and optical emission

  • Chimalgi, Vinay U.;Nishat, Md Rezaul Karim;Yalavarthi, Krishna K.;Ahmed, Shaikh S.
    • Advances in nano research
    • /
    • v.2 no.3
    • /
    • pp.157-172
    • /
    • 2014
  • The three-dimensional Nano-Electronic Modeling toolkit (NEMO 3-D) is an open source software package that allows the atomistic calculation of single-particle electronic states and optical response of various semiconductor structures including bulk materials, quantum dots, impurities, quantum wires, quantum wells and nanocrystals containing millions of atoms. This paper, first, describes a software module introduced in the NEMO 3-D toolkit for the calculation of electronic bandstructure and interband optical transitions in nanowires having wurtzite crystal symmetry. The energetics (Hamiltonian) of the quantum system under study is described via the tight-binding (TB) formalism (including $sp^3$, $sp^3s^*$ and $sp^3d^5s^*$ models as appropriate). Emphasis has been given in the treatment of surface atoms that, if left unpassivated, can lead to the creation of energy states within the bandgap of the sample. Furthermore, the developed software has been validated via the calculation of: a) modulation of the energy bandgap and the effective masses in [0001] oriented wurtzite nanowires as compared to the experimentally reported values in bulk structures, and b) the localization of wavefunctions and the optical anisotropy in GaN/AlN disk-in-wire nanowires.

Electronic State of ZnO Doped with Elements of IIIB family, Calculated by Density functional Theory (범밀도함수법을 이용하여 계산한 IIIB족 원소가 도핑된 ZnO의 전자상태)

  • Lee, Dong-Yoon;Lee, Won-Jae;Min, Bok-Ki;Kim, In-Sung;Song, Jae-Sung;Kim, Yang-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.589-593
    • /
    • 2005
  • The electronic states of ZnO doped with Al, Ga and In, which belong to III family elements in periodic table, were calculated using the density functional theory. In this study, the calculation was performed by two Programs; the discrete variational Xa (DV-Xa) method, which is a sort of molecular orbital full potential method; Vienna Ab-initio Simulation Package (VASP), which is a sort of pseudo potential method. The fundamental mixed orbital structure in each energy level near the Fermi level was investigated with simple model using DV-Xa. The optimized crystal structures calculated by VASP were compared to the measured structures. The density of state and the energy levels of dopant elements were shown and discussed in association with properties.

Single-walled carbon nanotubes directly-grown from orientated carbon nanorings

  • Tojo, Tomohiro;Inada, Ryoji;Sakurai, Yoji;Kim, Yoong Ahm
    • Carbon letters
    • /
    • v.27
    • /
    • pp.35-41
    • /
    • 2018
  • Surfactant-wrapped separation methods of metallic and semiconducting single-walled carbon nanotubes (SWCNTs) can result in large changes in intrinsic physical and chemical properties due to electronic interactions between a nanotube and a surfactant. Our approach to synthesize SWCNTs with an electronic feature relied on utilizing carbon nanorings, [n] cycloparaphenylenes ([n]CPPs), which are the fundamental unit of armchair type SWCNTs (a-SWCNTs) that possess a metallic feature without any surfactants. To obtain long tubular structures from [n]CPPs, the host-guest complexes formed with well-aligned [n]CPP hosts and various fullerene guests on a silicon substrate were pyrolyzed under an ethanol gas flow at a high temperature with focused-ultraviolet laser irradiation. The pyrolyzed [n]CPPs were observed to transform from nanorings to tubular structures with 1.5-1.7 nm diameters corresponding to the employed diameter of [n]CPPs. Our approach suggests that [n]CPPs are useful for structure-controlled synthesis of SWCNTs.

Electronic Properties and Conformation of$\pi$-Conjugated Molecules with Phenyl and Heterocyclic Group

  • Eunho Oh;Kim, Cheol-Ju
    • Journal of Photoscience
    • /
    • v.7 no.2
    • /
    • pp.67-71
    • /
    • 2000
  • A quantum-chemical investigation on the conformations and electronic properties of trans(diphenyl-diheterocyclic) ethenes(t-PHEs) as building block for fully $\pi$-conjuated polymer are performed in order to display the effects of heterocyclic ring substitution. Structures for the molecules, t-PHEs were fully optimized by using semiempirical AM1, PM3 methods, and ab initio HF methods, with 6-31G basic set. The potential energy curves with respect to the change of single are obtained by using ab initio HF/6-31G basic set. The curves are not similar shapes in the molecules with respect to heterocyclic rings. It is shown that the steric repulsion interactions between phenyl ring and heterocyclic ring are subjected to different type with the respect to each heterocyclic ring. Electronic properties of the molecules were molecules were obtained by applying the optimized structures and selected geometries to the extended Huckel method. To investigate the change of HOMO-LUMO gap with respedt to the torsion angle, we select the optimized structures. By using the results, the dependency of conjugation for the energy gaps is analyzed. For t-PHE the energy gap increase up to 0.52 eV compared with its planar structure. In the cases of t-PHE and t-PHE, the energy gap increase by 1.29 and 1.15 eV, respectively, compared with its planar structure.

  • PDF

Interfacial Electronic Structures of Poly[N-9''-hepta-decanyl-2,7-carbazole-alt- 5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] and [6,6]-phenyl C60 Butyric Acid Methyl Ester

  • Lee, Jung-Han;Seo, Jung-Hwa;Schlaf, Rudy;Kim, Kyoung-Joong;Yi, Yeon-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.277-277
    • /
    • 2012
  • PCDTBT (Poly[N-9''-hepta-decanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]) is an attractive material as a semiconducting polymer for organic thin film transistor (OTFT) and organic solar cell (OSC). High power conversion efficiency (~6%) under simulated AM 1.5G solar illumination of bulk-heterojunction solar cell with PCDTBT and [6,6]-phenyl C60 butyric acid methyl ester (PC61BM) blend was reported. In OSC, it is known that the band alignment at the interface between donor and acceptor is critical. Therefore, we studied the interfacial electronic structures of PCDTBT and PC61BM. The polymers are deposited by electro-spray on gold and In-situ x-ray and ultraviolet photoelectron spectroscopy measurements revealed the interfacial electronic structures. We obtained the energy level alignment between two materials and the different interface formation was observed with different deposition order.

  • PDF

An Efficient Design of a DC-Block Band Pass Filter for the L-Band

  • Kaur, Avneet;Malhotra, Jyoteesh
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.62-65
    • /
    • 2017
  • In this paper, three DC Block designs are presented which efficiently meet the need of modern-day compactsize wireless communication systems. As one of the important parts of a complete system design, the proposed microstrip-based DC block with coupled transmission lines efficiently attenuates unwanted frequencies that cause damage to the system. The compact-sized DC block structures are created by incorporating an extended coupled-line section with a radial stub, an enveloped coupled-line section, and using alternate up-down meandering techniques. The structures are analyzed for the L-Band using a high-resistive silicon substrate. At a resonating frequency of 1.575 GHz, the designed DC Block structures have a return loss better than -10 dB, an insertion loss of around -1 dB, and also possess wide pass-band characteristics.

Electronic Structures of Giant Magnetocaloric $Gd_5Si_2Ge_2$ Alloy

  • Rhee, Joo-Yull
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.4
    • /
    • pp.153-157
    • /
    • 2002
  • The electronic structures of Gd$_{5}$Si$_2$Ge$_2$ compound, which has a giant magnetocaloric effect, in the monoclinic and orthorhombic phases were calculated using the tight-binding linear-muffin-tin-orbital method within the atomic-sphere approximation. The calculated total energies of the monoclinic and orthorhombic structures in the paramagnetic phase confirm that the orthorhombic structure is more stable than monoclinic structure. The density of states (DOS) at the Fermi level of the orthorhombic phase is higher than that of the monoclinic phase in the paramagnetic phase, fulfilling the Stoner criterion. The calculated charge density verified the breaking of Ge(Si)-Ge(Si) bonding in the basal plane upon the orthorhombic-monoclinic phase transition. The DOS curve fairly well reproduces the photoemission spectrum.m.

  • PDF