• 제목/요약/키워드: electronic structures

검색결과 1,780건 처리시간 0.035초

First-principle study on interplay between structural and electronic properties of armchair CNTs

  • Lee, Hayoung;Kim, Cheol-Woon
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.472-474
    • /
    • 2014
  • Carbon nanotubes (CNTs) have been intensively investigated since they have been considered as building blocks of nanoscience and nanotechnology. Theoretical and computational studies on CNTs have revealed their physical and chemical properties and helped researchers build various experimental devices to study them in depth. However, there have been only few systematic studies on detailed changes in electronic structures of CNTs due to geometrical structure modifications. In this regard, it is necessary to perform systematic investigations of the modifications in electronic structures of CNTs, as their geometrical configurations are altered, using the first-principles density functional theory. In other words, it is essential to determine the true equilibrium structure of CNTs. We are going to construct different atomic configurations of each nanotube by maintaining the original symmetries, but changing all the other bonding types one by one. Furthermore, as for CNTs, for example, the way the graphene sheet is wrapped is represented by a pair of indices (n,m) and electronic structures of CNTs vary depending on different indices. Therefore, we plan to study and discuss all the significant couplings between electronic and geometric structures in CNTs.

  • PDF

바나듐이 도핑된 NiO 다공성 구조의 고감도 Trimethylamine 감응 특성 (Highly Sensitive Trimethylamine Sensing Characteristics of V-doped NiO Porous Structures)

  • 박세웅;윤지욱;박준식;이종흔
    • 센서학회지
    • /
    • 제25권3호
    • /
    • pp.218-222
    • /
    • 2016
  • Pure and V-doped NiO porous structures were prepared by the evaporation-induced surfactant assembly and subsequent pyrolysis of assembled structures, and their gas sensing characteristics were investigated. Pure NiO porous structures showed negligible gas responses (S=$R_g/R_a$, $R_g$: sensor resistance in analytic gas; $R_a$: sensor resistance in air) to 5 ppm trimethylamine (S=1.17) as well as other interfering gases such as ethanol, p-xylene, toluene, benzene and formaldehyde (S=1.02-1.13). In contrast, the V-doped NiO porous structures exhibited a high response and selectivity to 5 ppm trimethylamine (S=14.5) with low cross-responses to other interfering gases (S=4.0-8.7) at $350^{\circ}C$. The high gas response of V-doped NiO porous structures to trimethylamine was explained by electronic sensitization, that is, the increase in the chemoresistive variation due to the decrease in the hole concentration. The enhanced selectivity to trimethylamine was discussed in relation to the interaction between basic trimethylamine gas and acidic V catalysts.

Electronic Structures of Graphene Intercalated by Oxygen on Ru(0001): Scanning Tunneling Spectroscopy Study

  • Jang, Won-Jun;Jeon, Jeung-Hum;Yoon, Jong-Keon;Kahng, Se-Jong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.114-114
    • /
    • 2011
  • Graphene is the hottest topic in condensed-matter physics due to its unusual electronic structures such as Dirac cones and massless linear dispersions. Graphene can be epitaxially grown on various metal surfaces with chemical vapor deposition (CVD) processes. Such epitaxial graphene shows modified electronic structures caused by substrates. In the method for removal of the effect of substrate, there are bi, tri-layer graphene, gold intercalation, and oxygen intercalation. Here, We will present the changes of geometric and electronic structure of graphene grown on Ru(0001) by oxygen intercalation between graphene and Ru(0001). Using Scanning tunneling microscopy (STM) and spectroscopy (STS), we observed the aspect that the band gap features near the fermi level of graphene on Ru(0001) system is shifted and narrow. Based on the observed results, two effects by intercalated oxygen were considered.

  • PDF

집적회로 응용을 위한 빗살형 캐패시터의 특성연구 (Characterization of Interdigitated Capacitors for Integrated Circuit Application)

  • 김길한;이규복;김종규;윤일구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.130-133
    • /
    • 2004
  • The characterization of interdigitated capacitors was investigated. The test structures are manufactured by low temperature co-fired ceramic(LTCC) process and their s-parameters were measured. The optimized equivalent circuit models for test structures were obtained using the partial element equivalent circuit(PEEC) method. Predictive modeling was performed on different test structures using optimized parameters to verify the circuit models. From this result, the manufacturability on the process can be improved through the predictive modeling for the characteristics of interdigitated capacitors.

  • PDF

제일원리 LCAO 방법을 이용한 DNA Nucleobase 흡착된 그라핀의 원자 및 전자구조 연구 (A Study on the Atomic and Electronic Structures of DNA-nucleobases-adsorbed Graphene Through First-principles LCAO Method)

  • 이은철
    • 한국전기전자재료학회논문지
    • /
    • 제24권6호
    • /
    • pp.510-514
    • /
    • 2011
  • Based on first-principles LCAO method, we study the electronic and atomic structures of DNA nucleobases adenine (A), thymine (T), guanine (G), and cytosine (C) adsorbed on graphene surfaces. The ${\pi}-{\pi}$ stacking interactions between graphene and nucleobases lead to the bilayer geometries similar to the Bernal stacked graphite. Through the density of states and charge density analyses, it is found that nucleobases are physisorbed on graphene by dispersive interactions with negligible charge exchange. Our calculations reproduce the atomic structures obtained in previous plane wave calculations accurately with much less computation, and well describe the delocalized ${\pi}-{\pi}$ interactions in graphene-nucleobases system, indicating that the LCAO method is very efficient for investigating graphene-bio systems.

범함수궤도법을 이용하여 계산한 Al, Ga, In이 도핑된 ZnO의 전자상태 (Electronic State of ZnO doped with Al, Ga and In, Calculated by Density Functional Theory)

  • 이동윤;이원재;송재성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.218-221
    • /
    • 2004
  • The electronic state of ZnO doped with Al, Ga and In, which belong to III family elements in periodic table, was calculated using the density functional theory. In this study, the program used for the calculation on theoretical structures of ZnO and doped ZnO was Vienna Ab-initio Simulation Package (VASP), which is a sort of pseudo potential method. The detail of electronic structure was obtained by the describe variational $X{\alpha}(DV-X{\alpha})$(DV-Xa) method, which is a sort of molecular orbital full potential method. The optimized crystal structures obtained by calculations were compared to the measured structure. The density of state and energy levels of dopant elements was shown and discussed in association with properties.

  • PDF

전자기록철의 구조와 관리방안 - 영국 ERMS 표준을 중심으로 - (A Study of Electronic Records Folder Management)

  • 설문원;천권주
    • 한국기록관리학회지
    • /
    • 제5권2호
    • /
    • pp.49-72
    • /
    • 2005
  • 본 연구의 목적은 전자기록의 계층구조와 유형을 조사 분석하고, 전자기록의 각 계층 중 관리에 가장 기본이 되는 계층인 기록철(records folder)의 관리방안을 제시하는 것이다. 이를 위해 영국의 "전자기록관리시스템을 위한 기능요건"을 기준으로 전자기록의 계층모형 및 기록철 관리방안을 분석하였다. 또한 이 표준에서 제시한 전자기록의 계층구조를 가상의 사례에 적용해봄으로써 각 계층의 의미를 분명히 설명하고자 하였다. 이러한 선진사례 분석을 토대로, 우리나라 분류체계에서 전자기록철의 개념 도입 시 고려해야할 점, 전자기록철의 개시와 종결 기준 설정, 전자기록권(part) 개념의 도입 등을 중심으로 시사점을 정리하였다.

망목 구조 변화에 따른 에폭시 수지의 유전 특성에 관한 연구 (A Study on the Dielectric Characteristics in Epoxy Resins due to Variation of Network Structures)

  • 김재환;손인환;심종탁;김경환;김명호;최병옥
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권7호
    • /
    • pp.651-658
    • /
    • 1997
  • In this paper, effect of interpenetrating polymer network(IPN) introduction on the dielectric properties, heat proof properties, internal structure and defects of the Epoxy/SiO$_2$composite materials, were investigated. we reported a relation between network structures and electrical properties, especially dielectric characteristics with variation of network structures for epoxy composite materials. According to experimental results, the specimens which have single network structures have lower dielectric constant than interpenetrating polymer network(IPN) specimens, but have relatively larger dependency to variation of temperature and frequency. It was confirmed that change of structures is attained by introducing of IPN to insulating materials. Therefore it is counted that introduction of multiple structure including IPN is necessary to improve heat proof and electrical properties.

  • PDF

Reliability analysis for fatigue damage of railway welded bogies using Bayesian update based inspection

  • Zuo, Fang-Jun;Li, Yan-Feng;Huang, Hong-Zhong
    • Smart Structures and Systems
    • /
    • 제22권2호
    • /
    • pp.193-200
    • /
    • 2018
  • From the viewpoint of engineering applications, the prediction of the failure of bogies plays an important role in preventing the occurrence of fatigue. Fatigue is a complex phenomenon affected by many uncertainties (such as load, environment, geometrical and material properties, and so on). The key to predict fatigue damage accurately is how to quantify these uncertainties. A Bayesian model is used to account for the uncertainty of various sources when predicting fatigue damage of structural components. In spite of improvements in the design of fatigue-sensitive structures, periodic non-destructive inspections are required for components. With the help of modern nondestructive inspection techniques, the fatigue flaws can be detected for bogie structures, and fatigue reliability can be updated by using Bayesian theorem with inspection data. A practical fatigue analysis of welded bogies is utilized to testify the effectiveness of the proposed methods.

Graphene Based Nano-electronic and Nano-electromechanical Devices

  • Lee, Sang-Wook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.13-13
    • /
    • 2011
  • Graphene based nano-electronic and nano-electromechanical devices will be introduced in this presentation. The first part of the presentation will be covered by our recent results on the fabrication and physical properties of artificially twisted bilayer graphene. Thanks to the recently developed contact transfer printing method, a single layer graphene sheet is stacked on various substrates/nano-structures in a controlled manner for fabricating e.g. a suspended graphene device, and single-bilayer hybrid junction. The Raman and electrical transport results of the artificially twisted bilayer indicates the decoupling of the two graphene sheets. The graphene based electromechanical devices will be presented in the second part of the presentation. Carbon nanotube based nanorelay and A new concept of non-volatile memory based on the carbon nanotube field effect transistor together with microelectromechanical switch will be briefly introduced at first. Recent progress on the graphene based nano structures of our group will be presented. The array of graphene resonators was fabricated and their mechanical resonance properties are discussed. A novel device structures using carbon nanotube field effect transistor combined with suspended graphene gate will be introduced in the end of this presentation.

  • PDF