• Title/Summary/Keyword: electronic gradiometer

Search Result 5, Processing Time 0.015 seconds

Fabrication of an HTS DC SQUID Electronic Gradiometer and it's application in NDE system (고온 초전도 Electronic Gradiometer의 제작과 NDE system 에의 응용)

  • Kim, Jin-Young;Han, Sung-Gun;Kang, Joon-Hee;Lee, Eun-Hong;Song, I-Hun
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.120-123
    • /
    • 1999
  • We designed and constructed a non-destructive evaluation system using an HTS DC SQUID electronic gradiometer. Our DC SQUID electronic gradiometer is composed of two DC SQUID magnetometers. The system included a non-magnetic stainless steel cryostat and a set of coaxial exciting coils, which were used to induce an eddy current in the test material. We also have calculated the eddy current density produced by an exciting coil in any direction of the testing object. We could compute the eddy current density distribution in 3D. The SQUIDs were computer controlled and the output data from the electronic gradiometer was obtained by using a Labview software.

  • PDF

Design and Construction of an HTS DC SQUID Electronic Gradiometer NDE system

  • Kim, J.Y.;Han, S.G.;Kang, J.H.;Lee, E.H.;Song, I.H.
    • Progress in Superconductivity
    • /
    • v.1 no.2
    • /
    • pp.115-119
    • /
    • 2000
  • We designed and constructed a non-destructive evaluation system using an HTS DC SQUID electronic gradiometer. Our DC SQUID electronic gradiometer is composed of two DC SQUID magnetometers. The system included a non-magnetic stainless steel cryostat and a set of coaxial exciting coils, which were used to induce an eddy current in the test piece. We also have calculated the eddy current density produced by an exciting coil in any direction of the testing object. We could compute the eddy current density distribution in 3D. The SQUIDs were computer controlled and the output data from the electronic gradiometer was obtained by using a Labview software.

  • PDF

Measurement of weak magnetic signals using high-$T_c$ SQUID magnetometers in magnetically disturbed environment (High-$T_c$ SQUID 자력계를 이용한 자기잡음 환경에서의 미세자기신호 측정 및 분석)

  • 김인선;유권규;박용기
    • Progress in Superconductivity
    • /
    • v.4 no.2
    • /
    • pp.121-126
    • /
    • 2003
  • The single layer direct-coupled YBCO SQUID magnetometers have been fabricated and characterized for the purpose of the measurement of weak magnetic signals in unshielded environment. Two types of magnetometers have been designed and fabricated using 10 mm$\times$ 10 mm substrates. We could operate the conventional 3-mm-wide solid pickup loop magnetometers more stably than the 12-parallel-line pickup loop magnetometers in laboratory environment. We developed a first-order electronic gradiometer system using the SQUID sensors with axial displacement of 80 mm without any mechanical alignment of magnetometers. The system with a software filter using calculation of discrete Fourier transform could record clearly weak pulse signal of 100 pT in a magnetically disturbed environment.

  • PDF

Sensor Calibration of a Helmet MEG System (헬멧형 뇌자도 장치의 센서 교정)

  • Kwon, H.;Kim, K.;Yu, K.K.;Kim, J.M.;Lee, Y.H.
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.57-61
    • /
    • 2010
  • We have developed a whole-head MEG system for basic brain research and clinical application. The sensor system consists of a 152 SQUID gradiometer array oriented and located in a suitable way to cover a whole head of the human. The system measures magnetic fields generated by neuronal currents in the brain to get information on the brain activities. For this purpose, the field sensitivity determined by the position, orientation and geometry of the pickup coil as well as amplification factor of the electronic circuits should be known precisely. However, the position and orientation of the pickup coil might be changed from the designed specifications during cool down of the dewar and it is necessary to characterize the field sensitivity. In this study, we made calibration systems to determine the actual position and orientation of the 152 pickup coils and compared the localization results of the N100m source in the auditory cortex.