• Title/Summary/Keyword: electronic cooling device

Search Result 77, Processing Time 0.031 seconds

Boiling Heat Transfer from a locally Heated Surface -A Simulated Electronic Device under Liquid Immersion Cooling- (국부적인 발열부분을 가진 표면에서의 잠김 비등열전달 -전자부품 액침 냉각에서의 응용-)

  • 하광순;최상민
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.685-692
    • /
    • 1991
  • The pool boiling behavior of a heated surface has been investigated experimentally, focusing on the cases when only a part of the contact surface is heated. Characteristic boiling curves are obtained with circular metal surface test pieces heated below while immersed in Refrigerant-113. Locally heated test pieces are fabricated by inserting a heating block at the center inside a larger conducting block. Overall heat transfer rates are measured while the experimental conditions are systematically varied. The local temperature profiles along the radius are measured for conducting blocks. It is found that the conjugated boiling condition exists and the total heat fluxes should be correlated to a suitably defined temperature difference.

The Study of Using Separate Heatpipes for Thermal Control in Electronic Equipments (분리형 히트파이프를 이용한 전자장비내 발열체의 온도제어에 관한 연구)

  • 배석태
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.305-311
    • /
    • 2003
  • This Paper Presents an information about the heat transfer characteristics of a separate type thermosyphon in electronic equipments. The heat removal problem of electronic equipments is regarded as an important factor and a separate type heatpipes can be utilized as a cooling device of electronic equipments (such as CPU of a Personal computer or notebook). In this study. heat source ($50\times50\times2 mm $aluminum Pseudo CPU) was used for the experiment. The device can transfer heat from the evaporator to the condenser through natural circulation (without any external driving forces) and the results indicate that the device is capable of dissipating over 60W of thermal energy and keeping the heating plate surface temperature under $50^{\circ}C$.

Heat Dissipation of Sealed LED Light Fixtures Using Pulsating Heat Pipe Technology

  • Kim, Hyung-Tak;Park, Hae-Kyun;Bang, Kwang-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.64-71
    • /
    • 2012
  • An efficient cooling system is an essential part of the electronic packaging such as a high-luminance LED lighting. A special technology, Pulsating Heat Pipe (PHP), can be applied to improve cooling of a sealed, explosion-proof LED light fixture. In this paper, the characteristics of the pulsating heat pipes in the imposed thermal boundary conditions of LED lightings were experimentally investigated and a PHP device that works free of alignment angle was investigated for cooling of explosion-proof LED lights. Five working fluids of ethanol, FC-72, R-123, water, and acetone were chosen for comparison. The experimental pulsating heat pipe was made of copper tubes of internal diameter of 2.1 mm, 26 turns. A variable heat source of electric heater and an array of cooling fins were attached to the pulsating heat pipe. For the alignment of the heating part at bottom, an optimum charging ratio (liquid fluid volume to total volume) was about 50% for most of the fluids and water showed the highest heat transfer performance. For the alignment of the heating part on top, however, only R-123 worked in an un-looped construction. This unique advantage of R-123 is attributed to its high vapor pressure gradient. Applying these findings, a cooling device for an explosion-proof type of LED light rated 30 W was constructed and tested successfully.

Experiments on the Heat Transfer and Pressure Drop Characteristics of a Channel with Pin-Fin Array (핀-휜을 삽입한 채널의 열전달 및 압력강하 특성 실험)

  • 신지영;손영석;김상민;이대영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.623-629
    • /
    • 2004
  • Rapid development of electronic technology requires small size, high density packaging and high power of electronic devices, which result in more heat generation by the electronic system. Present cooling technology may not be adequate for the thermal management in the current state-of-the-art electronic equipment. Forced convective heat transfer in a channel filled with pin-fin array is studied experimentally in this paper as an alternative cool-ing scheme for a high heat-dissipating equipment. Various configurations of the pin-fin array are selected in order to find out the effect of spacing and diameter of the pin-fin on the heat transfer and pressure drop characteristics. In the low porosity region, interfacial heat transfer and pressure drop seem to show different trend compared to the conventional heat transfer process.

A Study on the Application Plan of Air-Conditioning and Renewable Complex Systems in the Small Schools. (소규모 학교의 냉난방 및 신재생에너지복합시스템 적용방안에 관한 연구)

  • Kim, Ji-Yeon;Park, Hyo-Soon;Hong, Sung-Hee;Kim, Seong-Sil;Hur, Inn-Ku;Suh, Seung-Jik
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.946-951
    • /
    • 2009
  • The research aims to study a new, optimum and renewable energy application method that can cover the minimum energy and operation costs within a range of school budgets. By deriving the optimum application method, it is expected to maximize the cooling/heating and water heating energy saving efficiencies for educational facilities. Therefore, this research carried out a study on the new/renewable energy utilization technique diffusion expansion method and the optimum method. As a result, the first optimum plan was introduced with the multi-type geothermal heat pump 174kW + solar heat collector $94\;m^2$ + highly efficient electronic cooling/heating device (EHP) 249.4kW. On the other hand, the second optimum plan was induced as the multi-type geothermal heat pump 255.2kW + highly efficient electronic cooling/heating device (EHP) 168.2kW.

  • PDF

A Study on the Application Plan of Air-Conditioning and New and Renewable Systems in the Large High Schools (대규모 고등학교의 냉난방 및 신재생에너지시스템 적용방안에 관한 연구)

  • Kim, Ji-Yeon;Park, Hyo-Soon;Kim, Seong-Sil;Suh, Seung-Jik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.10
    • /
    • pp.564-574
    • /
    • 2009
  • The study is conducted to study a new, optimum and new and renewable energy application method that can cover the minimum energy and operation costs within a range of school budgets. By deriving the optimum application method, it is expected to maximize the cooling/heating and hot water supply energy saving efficiencies for educational facilities. Therefore, this research implemented a study on the new and renewable energy utilization technique diffusion expansion method and the optimum method. As a result, the first optimum plan was introduced with the multi-type geothermal heat pump 475.6 kW+highly efficient electronic cooling/heating device(EHP) 545.2 kW. On the other hand, the second optimum plan was induced as the multi-type geothermal heat pump 261kW+solar heat collector $240\;m^2$+highly efficient electronic cooling/heating device(EHP) 759.8 kW.

Experimental fabrication and analysis of thermoelectric devices (복합재료에 의한 열전변환 냉각소자의 개발에 관한 연구)

  • 성만영;송대식;배원일
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.67-75
    • /
    • 1996
  • This paper has presented the characteristics of thermoelectric devices and the plots of thermoelectric cooling and heating as a function of currents for different temperatures. The maximum cooling and heating(.DELTA.T) for (BiSb)$\_$2/Te$\_$3/ and Bi$\_$2/(TeSe)$\_$3/ as a function of currents is about 75.deg. C, A solderable ceramic insulated thermoelectric module. Each module contains 31 thermoelectric devices. Thermoelectric material is a quaternary alloy of bismuth, tellurium, selenium, and antimony with small amounts of suitable dopants, carefully processed to produce an oriented polycrystalline ingot with superior anisotropic thermoelectric properties. Metallized ceramic plates afford maximum electrical insulation and thermal conduction. Operating temperature range is from -156.deg. C to +104.deg. C. The amount of Peltier cooling is directly proportional to the current through the sample, and the temperature gradient at the thermoelectric materials junctions will depend on the system geometry.

  • PDF

Study on the cooling control algorithm of electronic devices for an electric vehicle: Part 1 Effectiveness analysis of general control logic (전기자동차용 전자장비 냉각 제어 알고리즘에 관한 연구: Part 1 일반 냉각 제어 로직 유효성 분석)

  • Seo, Jae-Hyeong;Kim, Dae-Wan;Chung, Tae-Young;Jung, Tae-Hee;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.1850-1858
    • /
    • 2014
  • The object of this study is to develop an cooling control algorithm for electronics devices of the electric vehicle. In order to estimate the existing cooling control logic of the electronic devices for the small and medium sized electric vehicle, the experiments on the coolant temperature variation of the cooling system were conducted under 4 different seasons conditions. As a result, the existing cooling control logic were overcooled when it was compared with the reference temperature for a required cooling load. In addition, the newly developed optimum cooling control logic for improving the mileages of the tested electric vehicle with consideration of the ambient temperature, vehicle speed, and refrigerant temperature of the air conditioning on/off is necessary.

An Experimental Study on Small Capillary Pumped Cooling System (모세구동 소형 냉각시스템의 실험적 연구)

  • Yang, J.K.;Lee, K.J.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.234-239
    • /
    • 2000
  • The capillary pumped cooling system (CPCS) is a cooling system which controls temperature of the small electronic devices, such as IC device systems, notebook computers, etc. An important feature of CPCS is that a working fluid circulates in a system by capillary force in tubes instead of mechanical input power. The cooling effect of CPCS is investigated with respect to heat flux, condensation temperature under different working fluids (water, ethanol, methanol). Capillary pumped flows are visualized under various conditions and mass flow rate and temperature are experimentally measured. It is shown that the increasing tendency of mass flux for each working fluid is observed as the temperature of evaporator increases, and that the cooling possibility of CPCS depends on the performance of evaparator and condenser which sustains the steady state temperature continuously.

  • PDF

A Study on Automatic Sensing Device for Water Leakage of Cooling Pipe at Blast Furnace by Use The Electronic System (전자제어 장치를 이용한 용광로 냉각관 누수 지동 감지장치 개발에 관한 연구)

  • Kang, Chang-Soo;Kang, Ki-Seong
    • 전자공학회논문지 IE
    • /
    • v.46 no.4
    • /
    • pp.25-30
    • /
    • 2009
  • The cooling water circulation pipes had been used to drop the temperature of refractory outside shell of blast furnace by cooling plate or stave type. They were attacked by surrounding CO gas and it was the cause that they were corroded and the water inflow in the refractory due to leakage of water. So, the life of refractory material was shorten and changed for the worse the conditions of blast furnace. The automatic sensing device for water leakage of cooling pipe was developed to check the position of trouble by use the micro-process system when cooling water leak and then CO gas will be inflowed into the cooling pipe at the leakage position. The inflowed CO gas will be detected in the micro-process system and delivered the detected position of cooling plate or stave to main control room through the wireless-radio relay station. This system can be possible to detect the position of cooling plate or stave the water leakage part immediately and then deliver the signal to main control room by use the micro-process system and wireless-radio relay station. This system will develop the working condition from manual system to unmanned auto alarm system.