• 제목/요약/키워드: electron transport complex

검색결과 62건 처리시간 0.032초

Chloroplastic NAD(P)H Dehydrogenase Complex and Cyclic Electron Transport around Photosystem I

  • Endo, Tsuyoshi;Ishida, Satoshi;Ishikawa, Noriko;Sato, Fumihiko
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.158-162
    • /
    • 2008
  • Recent molecular genetics studies have revealed that cyclic electron transport around photosystem I is essential for normal photosynthesis and growth of plants. Chloroplastic NAD(P)H dehydorgenase (NDH) complex, a homologue of the complex I in respiratory electron transport, is involved in one of two cyclic pathways. Recent studies on the function and structure of the NDH complex are reviewed.

생쥐 간세포 Mitochondria의 전자전달계에 미치는 Chromium(VI)의 영향 (Effetcs of Hexavalent Chromium on the Mitochondrial Electron Transport System in Mouse Liver)

  • 부문종;유창규;최임순
    • Applied Microscopy
    • /
    • 제17권1호
    • /
    • pp.29-46
    • /
    • 1987
  • To study hexavalent chromium effects on mitochondrial electron transport, the activities of electron transport enzymes and conformational change of mitochondria treated with $40{\mu}M$ of sodium dichromate ($Na_{2}Cr_{2}O_{7}\;2H_{2}O$) were investigated. And so were those of liver mitochondria isolated from mouse intraperitoneally injected with sodium dichromate, 40mg per kg body weight. On both treatment with chromium(VI), the activities of electron transfer enzymes (Complex I and IV) were increased to some extent and the ultrastructural transformation of mitochondria from a condensed to an orthodox conformation was inhibited under State IV respiration. These results represent' inhibitory effect of hexavalent chromium on electron transport without inhibiting electron transfer enzymes (Complex I and IV) in mitochondria. On intraperitoneal treatment with hexavalent chromium as sodium dichromate and trivalent chromium as chromic chloride, containing 37.5 mg of chromium per kg body weight, respectively, the activities of electron transfer enzymes of liver isolated from mouse with chromium(VI) was reduced, but that with chromium(III) was not affected. And with chromium(VI), all mice after 12 hours of treatment died, only after 6 hours survived. With chromium(III), however, all survived. This indicates that hexavalent chromium is more toxic than trivalent chromiumin mouse liver.

  • PDF

Decursinol 처리에 따른 보리 유식물의 전자전달 활성과 엽록소-단백질 복합체의 변화에 대하여 (Changes of Chloroplast-Mediated Electron Transport Activity and Chlorophyll-Protein Complexes in Barley Seedlings by Decursinol)

  • 이현식
    • Journal of Plant Biology
    • /
    • 제31권2호
    • /
    • pp.131-141
    • /
    • 1988
  • The effects of decursinol and decursin on chloroplast-mediated electron transport and phosphorylation in barley seedlings were investigated in comparison with coumarin in the dark or light. The changes of CP-complexes were also studied. Decursinol, decursin and coumarin caused marked inhibitory effects on germination of seed and electron transport and phosphorylation activity of seedlings. The following order of inhibitory effectiveness was exhibited; decursinol>coumarin>decursin. Loss of chlorophyll and decrease of electron transport activity were retarded in the dark, but were reversely accelerated in the light by these three chemicals. The changes of CP-complex patterns were also similar to effects on chlorophyll content and the electron transport activity. These opposite effect in the dark and light suggest that these three chemicals act as natural growth retardants rather than cytokinins or growth inhibitors.

  • PDF

Electron Transport Properties of Zn(phen)q Compared with Alq3 in OLED

  • Kim, Byoung-Sang;Kim, Dong-Eun;Choi, Gyu-Chae;Park, Jun-Woo;Lee, Burm-Jong;Kwon, Young-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권3호
    • /
    • pp.418-422
    • /
    • 2009
  • We synthesized new electroluminescence materials [(1,10-phenanthroline)(8-hydroxyquinoline)] Zn(phen)q and investigated their electron transport properties. We used Zn(phen)q and $Alq_3$ for the conductive materials and measured their electron transport properties as a function of the organic layer thickness. The difference between Zn(phen)q and $Alq_3$ as electron transporting materials suggests that the electrical properties depends on the carrier injection.

국소마취제가 Mitochondria에서의 전자이동 및 Superoxide Radicals의 생성에 미치는 영향 (Effects of Local Anesthetics on Electron Transport and Generation of Superoxide Radicals in Mitochondria)

  • 이정수;신용규;이광수
    • 대한약리학회지
    • /
    • 제23권2호
    • /
    • pp.113-121
    • /
    • 1987
  • 국소마취제가 mitochondria에서의 전자이동 및 superoxide라디칼의 생성 그리고 지질의 과산화에 따른 malondialdehyde생성에 미치는 영향을 관찰하였다. 국소마취제는 전자이동계 의 효소활성도에 영향을 나타내었다. NADH dehydrogenase, NADH oxidase와 NADH-ubiquinone oxidoreductase의 활성도는 lidocaine, procaine과 dibucaine에 의하여 효과적으로 억제되었고 cocaine에 의하여 약간 억제되었다. Succinate dehydrogenase, succinate cytochrome c oxidoreductase와 succinate-ubiquinone oxidoreductase 활성도는 lidocaine 과 dibucaine에 의하여 억제되었으나 succinate oxidase는 국소마취제에 의하여 활성화되었다. 국소마취제는 dihydroubiquinone-cytochrome c oxidoreducatse와 cytochrome c oxidase의 활성도를 억제하였다. 이와 같은 반응에서 국소마취제에 대한 complex I segment의 반응이 다른 complex segment보다 크게 나타났다. 국소마취제는 succinate 또는 NADH에 의한 superoxide 생성과 이에 대한 antimycin의 자극효과를 억제하였다. 또한 국소마취제는 산소라디칼에 의한 지질의 과산화를 억제하였다. 이상의 결과로부터 국소마취제는 mitochondria의 전자전달 과정 중 Complex I segment때 또는 인접한 부위에 작용하여 전자이동을 억제함으로써 superoxide 생성과 지질의 과산화를 억제할 것으로 시사되었다.

  • PDF

Greening에 따른 유채 자엽의 엽록소-단백질 복합체 형성 (Formation of Chlorophyll-Protein Complexes in Greening Rape Cotyledons)

  • 이진범
    • Journal of Plant Biology
    • /
    • 제26권2호
    • /
    • pp.91-99
    • /
    • 1983
  • The formation of chlorophyll-protein complexes (CP-complexes) during the greening of rape cotyledons (Brassica napus cv. Yongdang) was investigated by the SDS-polyacrylamide gel electrophoresis. The total chlorophyll content and Chl a/b ratio were also determined. In addition, the effects of dark treatment on the CP-complex patterns during greening have been examined with respect to their photosynthetic electron transport activity. Greening has brought about the increasein total chlorophyll content and the decrease in Chl a/b ratio, but there have been no changes in Chl a/b ratio after 24 hrs of greening. The light-harvesting chlorophyll a/b-protein complex (LHCP-complex0 was predominant during the initial greening period. Thereafter, the amout of chlorophyll a-protein complex (CP I-complex) was gradually increased. Twenty-four-hr dark treatment immediately after illumination for 6 hrs and 12 hrs resulted in the increase of the Chl a/b ration and the CP I complex, otherwise the decrease of the LHCP-complex. The LHCP/CP I ratio was gradually decreased with further greening, and appeared no change after 48 hrs illumination. The investigation of the photosynthetic electron transport activity indicated that photosystem (PS) II activity (H2Olongrightarrowp-PD*+FeCy**) did not change, but the activity of PS I was increased suddenly due to the dark treatment. The data suggests that the increase of CP I-complex may result in that of P-700, that is, the increase of PS I activity.

  • PDF

The Study of Luminescence Efficiency by change of OLED's Hole Transport Layer

  • Lee, Jung-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권2호
    • /
    • pp.52-55
    • /
    • 2006
  • The OLEDs(Organic Light-Emitting Diodes) structure organizes the bottom layer using glass, ITO(indium thin oxide), hole injection layer, hole transport layer, emitting material layer, electron transport layer, electron injection layer and cathode using metal. OLED has various advantages. OLEDs research has been divided into structural side and emitting material side. The amount of emitting light and luminescence efficiency has been improved by continuing effort for emitting material layer. The emitting light mechanism of OLEDs consists of electrons and holes injected from cathode and anode recombination in emitting material layer. The mobilities of injected electrons and holes are different. The mobility of holes is faster than that of electrons. In order to get high luminescence efficiency by recombine electrons and holes, the balance of their mobility must be set. The more complex thin film structure of OLED becomes, the more understanding about physical phenomenon in each interface is needed. This paper observed what the thickness change of hole transport layer has an affection through the below experiments. Moreover, this paper uses numerical analysis about carrier transport layer thickness change on the basis of these experimental results that agree with simulation results.

납(Pb)이 생쥐 신장세포에 미토콘드리아 미세구조 및 전자전달계에 미치는 영향 (Effects of Lead on the Ultrastructure ana the Electron Transport System of Mitochondria of Mouse Kidney)

  • 임승섭;유정규;최임순
    • Applied Microscopy
    • /
    • 제17권2호
    • /
    • pp.55-71
    • /
    • 1987
  • To investigate the effects of lead on the electron transport system and ultrastructure of mouse kidney mitochondria, various lead acetate concentrations were treated in vitro and respiration rate, enzyme activities were measured. Ultrastructural changes at state IV respiration were also observed. To compare with in vivo experiments, mouse were injected intraperitoneally of 100 mg lead acetate per kg body weight and state IV respiration rate and enzyme activities were measured. Ultrastructure of renal proximal tubular cells were also observed. In in vitro treatement, decreased state IV respiration, decreased enzyme activities, ruptured membranes and inhibition of condensed to orthodox transformation were observed. In in vivo treatment, decreased state IV respiration and decreased enzyme activities were observed after 24 hrs of i.p. injection. Cytochrome c oxidase activity showed twice the inhibition compared to NADH-CoQ reductase activity at 24 hrs. Continuous decreased state IV respiration was observed after 48 and 72 hrs of injection, however, the enzyme activities were increased to control level. Lead-protein complex which probably inhibits the toxic effects of lead appeared. To conclude, dominant effect of lead on the electron transport system appeared at cytochrome c oxidase activity, and the increased enzyme activities may be a result of appearance of lead-protein complex.

  • PDF

Blue-green Electroluminescence from Aluminum and ${\alpha}$-pyridoin Complex

  • Kim, Won-Sam;Lee, Burm-Jong;Tuong, Nguyen Manh;Son, Eun-Mi;Yang, Ki-Sung;Kwon, Young-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.605-608
    • /
    • 2004
  • A novel blue-green emitting aluminum complex was developed by employing 8-hydroxyquinoline as co-ligand for enhancement of electron transport and light emission abilities so that the electroluminescent (EL) devices do not need additional electron transport layer. The aluminum complex (PAlQ) of 8-hydroxyquinoline and ${\alpha}$-pyridoin was synthesized The structure of the PAlQ was elucidated by FT-IR, UV-Vis and XPS. The PAlQ complex showed thermal stability up to 350$^{\circ}C$ under nitrogen flow by TGA. The photoluminescence (PL) was measured from solid film of the PAlQ complex on quartz substrate. The EL device was fabricated by the vacuum deposition. The device having the structure of ITO/TPD/PAlQ/Al was studied, where N,N-bis(3-methylphenyl}-N,N'-diphenyl-benzidine (TPD) was used as a hole transporting layer. The EL device emitted a blue-green light.

  • PDF

Improved Electron Injection on Organic Light-emitting Diodes with an Organic Electron Injection Layer

  • Kim, Jun-Ho;Suh, Chung-Ha;Kwak, Mi-Young;Kim, Bong-Ok;Kim, Young-Kwan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권5호
    • /
    • pp.221-224
    • /
    • 2005
  • To overcome of poor electron injection in organic light-emitting diodes (OLEDs) with Al cathode, a thin layer of inorganic insulating materials, like as LiF, is inserted between an Al cathode and an organic electron transport layer. Though the device, mentioned above, improves both turn on voltage and luminescent properties, it has some problems like as thickness restriction, less than 2 nm, and difficulty of deposition control. On the other hand, Li organic complex, Liq, is less thickness restrictive and easy to deposit and it also enhances the performance of devices. This paper reports the improved electron injection on OLEDs with another I A group metal complex, Potassium quinolate (Kq), as an electron injection material. OLEDs with organic complexes showed improved turn-on voltage and luminous efficiency which are remarkably improved compared to OLEDs with Al cathode. Especially, OLEDs with Kq have longer life time than OLEDs with Liq.