• 제목/요약/키워드: electron swarm method

검색결과 78건 처리시간 0.023초

유도 전류법을 이용한 알칼리 금속중에서 전자군의 이동속도 측정 (Measurement of the Drift Velocity for Electron Swarm in a Alkali Metal Using a Induced Current Method)

  • 백용현;하성철;이복희;유광식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1985년도 하계학술회의논문집
    • /
    • pp.215-218
    • /
    • 1985
  • In this paper, The electron drift velocity was measured from an experimental study of the open end heat pipe system by induced current method as alkali metal vapour was generated in ordinary region of a drift tube. The test condition was alkali metal vapour range from 3.6 to 20.1(Torr), temperature of 667 to 755(K), and E/N of $1{\times}10^{-16}$ to $1{\times}10^{-15}(v.cm^2)$. The results of this study were obtained essentially the same as the extrapolated prediction curve for electron drift velocity in the alkali metal Vapour of J. Lucas et 31 with range of E/N: $1{\times}10^{-17}$ to $1{\times}10^{-16}(v.cm^2)$, and the electron drift velocity was obtained the result an increase in alkali to E/N range from E/N $2.8{\times}10^{-17}$ to $5.6{\times}10^{-16}(v.cm^2)$ (E/N From 2.8 to 50 Td).

  • PDF

$SF_6$+Ar 혼합기체의 전리 및 부착계수에 관한 연구 (The Study on the Electron ionization and Attachment Coefficients in $SF_6$+Ar Mixtures Gas)

  • 김상남;하성철
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.591-593
    • /
    • 2000
  • In this paper, we describe the results of a combined experimental theoretical study designed to understand and predict the dielectric properties of SF$_{6}$ and SF$_{6}$+Ar mixtures. The electron transport, ionization, and attachment coefficients for pure SF$_{6}$ and gas mixtures containing SF$_{6}$ has been analysed over the E/N range 30~300[Td] by a two term Boltzmann equation and by a Monte Carlo Simulation using a set of electron cross sections determined by other authors, experimentally the electron swarm parameters for 0.2[%] and 0.5[%] SF$_{6}$+Ar mixtures were measured by time- of- flight method, The results show that the deduced electron drift velocities, the electron ionization or attachment coefficients, longitudinal and transverse diffusion coefficients and mean energy agree reasonably well with the experimental and theoretical for a rang of E/N values. Electron energy distribution functions computed from numerical solutions of the electron transport and reaction coefficients as functions of E/N. We have calculated $\alpha$,η and $\alpha$-η the ionization, attachment coefficients, effective ionization coefficients, and (E/N), the limiting breakdown electric-field to gas density ratio, in SF$_{6}$ and SF$_{6}$+Ar mixtures by numerically solving the Boltzmann equation for the electron energy distribution. The results obtained from Boltzmann equation method and Monte Carlo simulation have been compared with present and previously obtained data and respective set of electron collision cross sections of theections of the

  • PDF

$CF_4-Ar$ 혼합기체의 전자수송계수에 관한 연구 (Study on the Electron Transport Coefficient in Mixtures of $CF_4$ and Ar)

  • 김상남
    • 전기학회논문지P
    • /
    • 제56권1호
    • /
    • pp.1-5
    • /
    • 2007
  • Study on the electron transport coefficient in mixtures of CF4 and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CF_4$ and Ar, were used. The differences of the transport coefficients of electrons in $CF_4$ mixtures of Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4-Ar$ mixtures shows the Maxwellian distribution for energy. That is, $f({\varepsilon})$ has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures. A two-term approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.

$CF_4$ 혼합기체(混合氣體)에서 전자(電子)에너지분포함수 (A Simulation of the Energy Distribution Function for Electron in $CF_4$-Ar Mixtures Gas)

  • 김상남;성낙진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.37-40
    • /
    • 2004
  • Electron swarm parameters in pure $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation(BEq.) method and the Monte Carlo simulation(MCS) The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy

  • PDF

CF4, CH4, Ar 혼합기체의 전자 평균에너지 (Electron Mean Energy in CF4, CH4, Ar mixtures)

  • 김상남
    • 전기학회논문지P
    • /
    • 제64권4호
    • /
    • pp.241-245
    • /
    • 2015
  • Energy Distribution Function in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CH_4$, $CF_4$ and Ar, were used. The differences of the transport coefficients of electrons in $CH_4$, mixtures of $CH_4$ and Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, $f({\varepsilon})$ has the symmetrical shape whose axis of symmetry is a most probably energy.

볼츠만 방정식을 이용한 $SF_6+O_2$ 혼합가스의 전자이동속도 (The analysis of electrons drift velocity in $SF_6+O_2$ mixture gas by Boltzmann-Equation)

  • 송병두;하성철;전병훈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 유기절연재료 전자세라믹 방전플라즈마 일렉트렛트 및 응용기술
    • /
    • pp.185-188
    • /
    • 2002
  • This paper describes the information for quantitative simulation of weakly ionized plasma. We should grasp the meaning of the plasma state condition to utilize engineering application and to understand materials of plasma state. In this paper, the drift velocity of electron in $SF_6+O_2$ mixture gas calculated for range E/N values l~900[Td] at the temperature is 300[$^{\circ}K$] and pressure is 1[Torr], using a set of electron collision cross sections determined by the authors and the values of drift velocity of electrons are obtained for TOF, PT, SST sampling method of Backward Prolongation by two term approximation Boltzmann equation method. It has also been used to predict swarm parameter using the values of cross section as input. The result of Boltzmann equation, the drift velocity of electrons, has been compared with pure $SF_6$, pure $O_2$ and mixture gas.

  • PDF

CF4, CH4, Ar 혼합기체의 전리와 부착계수 (Ionization and Attachment Coefficients in CF4, CH4, Ar Mixtures Gas)

  • 김상남
    • 전기학회논문지P
    • /
    • 제61권1호
    • /
    • pp.13-17
    • /
    • 2012
  • Ionization and Attachment Coefficients in pure $CH_4$, $CF_4$ and mixtures of $CF_4$ and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CH_4$, $CF_4$ and Ar, were used. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4$-Ar mixtures shows the Maxwellian distribution for energy. That is, f(${\varepsilon}$) has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures.

Numerical Study of a Novel Bi-focal Metallic Fresnel Zone Plate Having Shallow Depth-of-field Characteristics

  • Kim, Jinseob;Kim, Juhwan;Na, Jeongkyun;Jeong, Yoonchan
    • Current Optics and Photonics
    • /
    • 제2권2호
    • /
    • pp.147-152
    • /
    • 2018
  • We propose a novel bi-focal metallic Fresnel zone plate (MFZP) with shallow depth-of-field (DOF) characteristics. We design the specific annular slit patterns, exploiting the phase-selection-rule method along with the particle swarm optimization algorithm, which we have recently proposed. We numerically investigate the novel characteristics of the bi-focal MFZP in comparison with those of another bi-focal MFZP having equivalent functionality but designed by the conventional multi-zone method. We verify that whilst both bi-focal MFZPs can produce dual focal spots at $15{\mu}m$ and $25{\mu}m$ away from the MFZP plane, the former exhibits characteristics superior to those of the latter from the viewpoint of axial resolution, including the axial side lobe suppression and axial DOF shallowness. We expect the proposed bi-focal MFZP can readily be fabricated with electron-beam evaporation and focused-ion-beam processes and further be exploited for various applications, such as laser micro-machining, optical trapping, biochemical sensing, confocal sensing, etc.