• Title/Summary/Keyword: electron precipitation

Search Result 374, Processing Time 0.02 seconds

Effect Of The Microstructure And Aging Treatment Conditions On Strength Of High Strength Invar Alloy (고강도 인바합금의 강도에 미치는 미세구조와 시효처리 조건의 영향)

  • Jung, J.Y.;Lee, K.D.;Ha, T.K.;Jeong, H.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.322-325
    • /
    • 2007
  • Precipitation characteristics of the Fe-36Ni based high strength Invar alloy for power transmission wire was investigated in this study. High strength can be obtained in this alloy through solution hardening, precipitation hardening and strain hardening by cold working. In the present study, ingots of Fe-36Ni based Invar alloys with the contents of C, Mo and V varied. Microstructure observations by OM, SEM, and TEM were carried out to validate the simulation results. BCC phase and $FeNi_3$ phase are also expected at lower temperatures below $500^{\circ}C$. Aging treatments were carried out at temperatures ranging from 400 to $900^{\circ}C$ for time intervals from 3 min to 100hrs. Peak aging condition was obtained as $400^{\circ}C$ and 1 hr. With temperature increased, peak strength was decreased abruptly. Microstructure observation was conducted by optical microscopy, scanning electron microscopy, and transmission electron microscopy.

  • PDF

Synthesis and Catalytic Applications of Ruthenium(0) Nanoparticles in Click Chemistry

  • Kumar, Avvaru Praveen;Baek, Min-Wook;Sridhar, Chirumarry;Kumar, Begari Prem;Lee, Yong-Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1144-1148
    • /
    • 2014
  • Here we report a facile synthesis of ruthenium (Ru) Nanoparticles (NPs) by chemical co-precipitation method. The calcination of ruthenium hydroxide samples at $500^{\circ}C$ under hydrogen atmosphere lead to the formation of $Ru^0$ NPs. The size and aggregation of Ru NPs depends on the pH of the medium, and type of surfactant and its concentration. The X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope image (TEM) analyses of particles indicated the formation of $Ru^0$ NPs, and have 10 to 20 nm sizes. As-synthesized $Ru^0$ NPs are characterized and investigated their catalytic ability in click chemistry (azidealkyne cycloaddition reactions), showing good results in terms of reactivity. Interestingly, small structural differences in triazines influence the catalytic activity of $Ru^0$ nanocatalysts. Click chemistry has recently emerged to become one of the most powerful tools in drug discovery, chemical biology, proteomics, medical sciences and nanotechnology/nanomedicine. In addition, preliminary tests of recycling showed good results with neither loss of activity or significant precipitation.

Microbiologically - Enhanced Crack Remediation (MECR)

  • Bang Sookie S.;Ramakrishnan V.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2001.11a
    • /
    • pp.26-36
    • /
    • 2001
  • A novel approach of microbiologically-enhanced crack remediation (MECR) has been initiated and evaluated in this report. Under the laboratory conditions, Bacillus pasteurii was used to induce $CaCO_3$ precipitation as the microbial urease hydrolyzes urea to produce ammonia and carbon dioxide. The ammonia released in surroundings subsequently increases pH, leading to accumulation of insoluble $CaCO_3$. Scanning electron micrography (SEM) and x-ray diffraction (XRD) analyses evidenced the direct involvement of microorganisms in $CaCO_3$ precipitation. In biochemical studies, the primary roles of microorganisms and microbial urease were defined. Furthermore, the role of urease in $CaCO_3$ precipitation was characterized utilizing recombinant Escherichia coli that encoded B. pasteurii urease genes in a plasmid. Microorganisms immobilized in polyurethane (PU) polymer were applied to remediate concrete cracks. Although microbiologically- induced calcite precipitation enhanced neither the tensile strength nor the modulus of elasticity of the PU polymer, cement mortar whose crack was remediated with the cemaden polymer showed a significant increase in compressive strength. Through detailed investigation, MECR showed an excellent potential in cementing cracks in granite, concrete, and beyond.

  • PDF

Coherent Precipitation of $Zn_3P_2$ During Zn Diffusion in a GaInAsP/InP Heterostructure (GaInAsP/InP 이종구조에서 Zn 확산에 의한 $Zn_3P_2$의 정합석출)

  • 홍순구;이정용;박효훈
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.206-214
    • /
    • 1993
  • Coherent precipitation of Zn3P2 during Zn diffusion in a GaInAsP/InP heterostructure was studied using high-resolution transmission electron microscopy. Zn-diffusion-induced intermixing of Ga and In across the GaInAsP/InP heterointerface provided a Ga-mixed InP region which was nearly lattice-matched with Zn3P2 crystal and thus allowed thecoherent precipitation of Zn3P2. The Zn3P2 precipitates were preferentially nucleated at stacking faults which were formed to relax interfacial strain built up by the intermixing. The precipitates were grown to planar epitaxial layer along (100) plane in the lattice-matched region. The TEM images and diffraction pettern revealed that the tetragonal Zn3P2 crystals were coherently matched to the fcc structured GaInP matrix by the {{{{ SQRT {2} $\times$ SQRT {2} $\times$2 }} arrangement. The precipitation reaction of Zn3P2 was explained by an atomic migration model based on the kick-out mechanism.

  • PDF

A Study on Electroless Ni-B Plating with DMAB as Reducing Agent. I. The Electrochemical Behavior of Precipitation Reaction on Austenite Stainless Steel Substrates (DMAB를 사용한 무전해 Ni-B 합금 도금 I. 오스테나이트 스텐레스강 상의 석출반응에 대한 전기화학적 거동)

  • 이창래;박해덕;강성군
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.2
    • /
    • pp.172-181
    • /
    • 1999
  • The effect of the DMAB concentration, temperature, deposition time, and stabilizer concentration on the precipitation reaction of the electroless nickel plating using dimethylamine borane (DMAB) as reducing agent was investigated to by the weight gain and electrochemical method. The deposition rate was dependent with DMAB concentration. The polarization resistance of the precipitation reaction was reduced with DMAB concentration. The precipitation reaction rate of Ni-B deposits was controlled by the oxidation rate of DMAB as the source of electron. The boron content of the deposit was constant at about 5.5wt%, even when DMAB concentration in the solution was increased. The effect of temperature and stabilizer ($Pb(NO_3)_2$) concentration on deposition rate was shown to have co-dependent behaviors.

  • PDF

Synthesis of Magnetic Nanoparticles Using Magnolia kobus Leaf Extract (목련잎 추출액을 이용한 자성 나노입자의 합성)

  • Song, Jae-Yong;Byun, Tae-Gang;Kim, Beom-Soo
    • KSBB Journal
    • /
    • v.27 no.3
    • /
    • pp.157-160
    • /
    • 2012
  • When iron oxide magnetic nanoparticles were synthesized by co-precipitation method using aqueous ammonia as reducing agent, the synthesized particles were aggregated and thus precipitation occurred. Using Magnolia kobus leaf extract as reducing agent, spherical nanoparticles of 50~200 nm were synthesized with low yield. By using both Magnolia kobus leaf extract and aqueous ammonia as reducing and stabilizing agents, smaller nanoparticles of 40~120 nm could be synthesized with various shapes. The synthesized magnetic nanoparticles were characterized with field emission transmission electron microscopy (FE-TEM) and scanning electron microscopy (SEM). TEM and SEM images showed that the magnetic nanoparticles are a mixture of triangles, tetragons, rods and spherical structures.

Precipitation Behavior of α-Cr Particle in B2-type Intermetallic Compounds β-NiAl (B2형 금속간화합물 β-NiAl중에 α-Cr입자의 석출거동)

  • Han, Chang-Suck;Kim, Youn-Che
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.2
    • /
    • pp.91-102
    • /
    • 1996
  • Microstructural control to produce multiphase structure has received much attention to improve the high temperature strength as well as low temperature ductility of intermetallics. Transmission electron microscopic investigation has been carried out concerning the effect of Cr-precipitation on the mechanical properties of B2-ordered NiAl containing 4 to 8 mol% of Cr. By aging at temperatures around 973 K after solution annealing, fine spherical precipitates took place homogeneously in the NiAl matrix and the alloys hardened appreciably. Selected area electron diffraction (SAED) patterns have not revealed any additional extra-spots during aging, because the Cr-particles show cube-cube orientation relationship and keep a perfect coherency with the ordered matrix lattice. Dislocations were confirmed to bypass the particles during deformation. Although the dispersion of Cr-particles increased the yield strength of NiAl at intermediate temperature, the strength decreased appreciably at higher temperatures.

  • PDF

Simulating Bioremediation of Uranium-Contaminated Aquifers

  • ;Peter R. Jaffe
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.161-166
    • /
    • 2002
  • Bioremediation of trace metals in groundwater may require the manipulation of redox conditions via the injection of a carbon source. To simulate the numerous biogeochemical processes that will occur during the bioremediation of trace-metal-contaminated aquifers, a reactive transport model has been developed. The model consists of a set of coupled mass balance equations, accounting for advection, hydrodynamic dispersion, and a kinetic formulation of the biological or chemical transformations affecting an organic substrate, electron acceptors, corresponding reduced species, and trace metal contaminants of interest, uranium in this study. The redox conditions of the domain are characterized by estimating the pE, based on the concentrations of the dominant terminal electron acceptor and its corresponding reduced specie. This pE and the concentrations of relevant species we then used by a modified version of MINTEQA2, which calculates the speciation/sorption and precipitation/dissolution of the species of interest under equilibrium conditions. Kinetics of precipitation/dissolution processes are described as being proportional to the difference between the actual and calculated equilibrium concentration.

  • PDF

Structural characterization of aluminum oxide precipitation formed on the surface of nickel-carbon film (니켈/탄소 복합체 박막 표면에 형성된 알루미늄 산화물의 구조 분석)

  • Lee, Min-Hui;Na, Hyeon-Ung;Choe, Han-Sin;Kim, Gyu-Hyeon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.174-175
    • /
    • 2014
  • We fabricated a Ni/C composite thick film on ${\alpha}-Al_2O_3$ substrate. A number of precipitations were observed on the film surface. Structural characterization was performed on the observed precipitations using transmission electron microscopy (TEM) with help of the elemental mapping, electron diffraction (ED) and ED simulation. The structural characterization revealed that the precipitation is ${\theta}-Al_2O_3$ having the space group of C2/m (Monoclinic).

  • PDF

Effect of Aluminium and Boron on Formability for Cu Bearing Extra Low Carbon Steel Sheets (Cu첨가 극저탄소 고 강도강의 가공성에 미치는 Al과 B의 영향)

  • Kim, S.I.;Chung, K.H.;Hong, M.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.302-305
    • /
    • 2009
  • This paper examines the effect of nitride formation on formability for Cu bearing high strength extra low carbon (ELC) steel sheets. For this purpose, we have investigated the effect of addition of aluminium (Al) and boron (B) on texture and precipitation behavior of the ELC steel during continuous annealing. Mechanical properties and microstructures of the ELC steel sheets were analyzed as well using uni-axial tensile test, electron back-scattered diffraction (EBSD) technique and transmission electron microscopy (TEM) following pilot rolling and continuous annealing. It has been found that the addition of Al and B increases the precipitation of AlN and BN. What is more, the scavange of solute nitrogen is effective in increasing the formability of the ELC steels. In addition, the Al and B addition improves the aging property of the ELC steel.

  • PDF