• Title/Summary/Keyword: electron microscope analysis

Search Result 1,022, Processing Time 0.028 seconds

Adsorption and Desorption Characteristics of Sr, Cs, and Na Ions with Na-A Zeolite Synthesized from Coal Fly Ash in Low-Alkali Condition (석탄 비산재로부터 저알칼리 조건에서 합성된 Na-A 제올라이트의 Sr, Cs 및 Na 이온의 흡탈착 특성)

  • Choi, Jeong-Hak;Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.28 no.6
    • /
    • pp.561-570
    • /
    • 2019
  • A zeolitic material (Z-Y2) was synthesized from Coal Fly Ash (CFA) using a fusion/hydrothermal method under low-alkali condition (NaOH/CFA = 0.6). The adsorption performance of the prepared zeolite was evaluated by monitoring its removal efficiencies for Sr and Cs ions, which are well-known as significant radionuclides in liquid radioactive waste. The XRD (X-ray diffraction) patterns of the synthesized Z-Y2 indicated that a Na-A type zeolite was formed from raw coal fly ash. The SEM (scanning electron microscope) images also showed that a cubic crystal structure of size $1{\sim}3{\mu}m$ was formed on its surface. In the adsorption kinetic analysis, the adsorption of Sr and Cs ions on Z-Y2 fitted the pseudo-second-order kinetic model well, instead of the pseudo-first-order kinetic model. The second-order kinetic rate constant ($k_2$) was determined to be $0.0614g/mmol{\cdot}min$ for Sr and $1.8172g/mmol{\cdot}min$ for Cs. The adsorption equilibria of Sr and Cs ions on Z-Y2 were fitted successfully by Langmuir model. The maximum adsorption capacity ($q_m$) of Sr and Cs was calculated as 1.6846 mmol/g and 1.2055 mmol/g, respectively. The maximum desorption capacity ($q_{dm}$) of the Na ions estimated via the Langmuir desorption model was 2.4196 mmol/g for Sr and 2.1870 mmol/g for Cs. The molar ratio of the desorption/adsorption capacity ($q_{dm}/q_m$) was determined to be 1.44 for Na/Sr and 1.81 for Na/Cs, indicating that the amounts of desorbed Na ions and adsorbed Sr and Cs ions did not yield an equimolar ratio when using Z-Y2.

Experimental Study on the Wear Effects of a Brush Seal in DN 2.5million in a 250℃ High - temperature Steam Environment (DN 250만 250℃고온 스팀환경에서 운전되는 단열 브러쉬 실 마모효과에 관한 실험적 연구)

  • Ha, YunSeok;Ha, TaeWoong;Lee, YoungBok
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.99-105
    • /
    • 2019
  • This study presents an experimental investigation of the wear and oxidation of the bristles of a brush seal in a super-heated steam environment. We construct a model reflecting normal force and radial interference to predict the amount of wear. To monitor the volume loss of the bristle induced by the swirl phenomenon of the rotor, we measure the clearance between the rotor and the brush seal by using a non-contact 3-D device. We calculate the area by using the area-wise measurement method. Considering the obvious brush seal wear variables, we use two disks with different roughness($Ra=0.1{\mu}m$ and $100{\mu}m$) to determine the effect of roughness on wear. Considering an actual steam turbine, we utilize a steam generator and super-heater to generate a working fluid (0.95MPa, 523.15K) that has high kinetic energy. We observe the abrasion of the bristles in the hot steam environment through a scanning electron microscope image. This study also conducted energy dispersive X-ray (EDX) analysis for a qualitative evaluation of local chemistry. The results indicate that the wear and elimination of bristles occur on the disk with high roughness, and the weight increases due to oxidation. Furthermore these results, reveal that the bristle oxidation is accelerated more under super-heated steam conditions than under conditions without steam.

Analysis of Hair Damage from Bleach particles (모발 탈색제의 입자와 모발손상과의 상관성 연구)

  • Lim, Han-Sol;Lim, Sun-Nye
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.357-364
    • /
    • 2019
  • This study comparatively analyzed hair damage by hair bleach particles and identified three different bleach particle sizes using a scanning electron microscope (SEM). The powdered bleaching agents made of ammonium persulfate (APS) and potassium persulfate had particle sizes of $131{\mu}m$, $72{\mu}m$ and $48.8{\mu}m$. According to a hair damage test, cuticle lift-up or peeling hardly occurred when small bleach particles were used. In terms of hair color, the hair bleached with larger bleach particles was the darkest, while the hair bleached with small bleach particles was the brightest. The results found that for bleaching agents that are more effective in easing hair damage, those with little particles should be used. In addition, it appears that the selection of particles depending on the degree of hair bleaching would enhance bleaching effects and reduce hair damage. The above process is a way to get great results in selecting a bleaching agent. It is anticipated that hair damage could be reduced during hair bleaching based on the above results.

Effects of various zirconia surface treatments for roughness on shear bond strength with resin cement (지르코니아의 거칠기 증가를 위한 다양한 표면처리방법이 레진 시멘트와의 전단결합강도에 미치는 영향)

  • Bae, Gang-Ho;Bae, Ji-Hyeon;Huh, Jung-Bo;Choi, Jae-Won
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.326-333
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the effects of various zirconia surface treatment methods on shear bond strength with resin cements. Methods: We prepared 120 cylindrical zirconia specimens (⌀10 mm×10 mm) using computer-aided design/computer-aided manufacturing (CAD/CAM). Each specimen was randomly subjected to one of four surface treatment conditions: (1) no treatment (control), (2) airborne-particle abrasion with 50 ㎛ of Al2O3 (A50), (3) airborne-particle abrasion with 125 ㎛ of Al2O3 (A125), and (4) ZrO2 slurry (ZA). Using a polytetrafluoroethylene mold (⌀6 mm×3 mm), we applied three resin cements (Panavia F 2.0, Super-Bond C&B, and Variolink N) to each specimen. The shear bond strength tests were performed in a universal testing machine. The surfaces of representative specimens of each group were evaluated under scanning electron microscope. We used one-way analysis of variance (ANOVA), two-way ANOVA, and post hoc Tukey honest significant difference test to analyze the data. Results: In the surface treatment method, the A50 group showed the highest bond strength, followed by A125, ZA, and control groups; however, no significant difference was observed between A50 and A125, A125 and ZA, and ZA and control (p>0.05). Among the resin cements, Super-Bond C&B showed the highest shear bond strength, followed by Panavia F 2.0 and Variolink N (p<0.05). Conclusion: Within the limitations of this study, application of airborne-particle abrasion and ZrO2 slurry improved the shear bond strength of resin cement on zirconia.

Using Taguchi design of experiments for the optimization of electrospun thermoplastic polyurethane scaffolds

  • Nezadi, Maryam;Keshvari, Hamid;Yousefzadeh, Maryam
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.59-69
    • /
    • 2021
  • Electrospinning is a cost-effective and versatile method for producing submicron fibers. Although this method is relatively simple, at the theoretical level the interactions between process parameters and their influence on the fiber morphology are not yet fully understood. In this paper, the aim was finding optimal electrospinning parameters in order to obtain the smallest fiber diameter by using Taguchi's methodology. The nanofibers produced by electrospinning a solution of Thermoplastic Polyurethane (TPU) in Dimethylformamide (DMF). Polymer concentration and process parameters were considered as the effective factors. Taguchi's L9 orthogonal design (4 parameters, 3 levels) was applied to the experiential design. Optimal electrospinning conditions were determined using the signal-to-noise (S/N) ratio with Minitab 17 software. The morphology of the nanofibers was studied by a Scanning Electron Microscope (SEM). Thereafter, a tensile tester machine was used to assess mechanical properties of nanofibrous scaffolds. The analysis of DoE experiments showed that TPU concentration was the most significant parameter. An optimum combination to reach smallest diameters was yielded at 12 wt% polymer concentration, 16 kV of the supply voltage, 0.1 ml/h feed rate and 15 cm tip-to-distance. An empirical model was extracted and verified using confirmation test. The average diameter of nanofibers at the optimum conditions was in the range of 242.10 to 257.92 nm at a confidence level 95% which was in close agreement with the predicted value by the Taguchi technique. Also, the mechanical properties increased with decreasing fibers diameter. This study demonstrated Taguchi method was successfully applied to the optimization of electrospinning conditions for TPU nanofibers and the presented scaffold can mimic the structure of Extracellular Matrix (ECM).

Evaluation of Ultrasonic Multiple Scattering Method to Improve the Accuracy of Fine Dust Measurement (비산먼지 측정 정확도 개선을 위한 시뮬레이션 초음파 다중 산란 알고리즘 검증)

  • Woo, Ukyong;Choi, Hajin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.119-128
    • /
    • 2020
  • An ultrasonic multiple scattering simulation using cross-section of fine dust particles were proposed. These days, along with awareness of air pollution, social interest in fine dust is increasing. In the construction field, awareness of fine dust is increasing, and research on preparing various countermeasures is underway. The light scattering method fine dust meter currently in use is affected by environmental factors such as relative humidity, and reliability problems in terms of accuracy are continuously reported. However, the transmission of ultrasonic waves can directly reflect the physical change of the medium based on the mechanical wave. Using these advantages of ultrasonic waves, fine dust measurement simulation was performed using the scattering cross section and ultrasonic multiple scattering theory. The shape data of the fine dust particles were collected using a SEM (Scanning Electron Microscope), and a cross-section according to the fine dust particles was derived through numerical analysis. As a result of signal processing, the error for the number density corresponding to each cross-section is minimum 19, maximum 3455.

Preparation of Poly(vinyl alcohol)/polypropylene Nano-filter by High Speed Centrifugal Solution Spinning (초고속 용액 원심방사를 이용한 폴리비닐알코올/폴리프로필렌 나노필터 제조)

  • Yang, Seong Baek;Lee, Jungeon;Park, Jae Min;Jung, Jae Hoon;Kim, Tae Young;Kim, Ki Young;Lee, Sang Jun;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.34 no.1
    • /
    • pp.20-26
    • /
    • 2022
  • Centrifugal spinning is an emerging technique for fabricating micro-to-nano-fibers in recent years. To obtain fibers with the desired size and morphology, it is necessary to configure and optimize the parameters used in centrifugal spinning. In this study, it was controlled by changing the solution's concentration (7.5, 10, and 12.5 wt.%) and disk's rotational velocity (6,000, 8,000, and 10,000 rpm) to prepare centrifugal spun nano-filter. The morphological property, air permeability, and dust collection efficiency of the PVA/PP bi-layer nanoweb prepared by centrifugal spun PVA on the PP micron nonwoven substrate are studied using a field emission scanning electron microscope, an air permeability tester, and a filter tester equipment, and the analysis results indicate that it is suitable as a nano-filter when the concentration of PVA solution is 10 wt.% and the rotational velocity of the disk is 8,000 rpm. The resultant reduced diameter and uniform fibers also proved that an excellent dust collection efficiency filter could be made.

Chlorination of TRU/RE/SrOx in Oxide Spent Nuclear Fuel Using Ammonium Chloride as a Chlorinating Agent

  • Yoon, Dalsung;Paek, Seungwoo;Lee, Sang-Kwon;Lee, Ju Ho;Lee, Chang Hwa
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.193-207
    • /
    • 2022
  • Thermodynamically, TRUOx, REOx, and SrOx can be chlorinated using ammonium chloride (NH4Cl) as a chlorinating agent, whereas uranium oxides (U3O8 and UO2) remain in the oxide form. In the preliminary experiments of this study, U3O8 and CeO2 are reacted separately with NH4Cl at 623 K in a sealed reactor. CeO2 is highly reactive with NH4Cl and becomes chlorinated into CeCl3. The chlorination yield ranges from 96% to 100%. By contrast, U3O8 remains as UO2 even after chlorination. We produced U/REOx- and U/SrOx-simulated fuels to understand the chlorination characteristics of the oxide compounds. Each simulated fuel is chlorinated with NH4Cl, and the products are dissolved in LiCl-KCl salt to separate the oxide compounds from the chloride salt. The oxide compounds precipitate at the bottom. The precipitate and salt phases are sampled and analyzed via X-ray diffraction, scanning electron microscope-energy dispersive spectroscopy, and inductively coupled plasma-optical emission spectroscopy. The analysis results indicate that REOx and SrOx can be easily chlorinated from the simulated fuels; however, only a few of U oxide phases is chlorinated, particularly from the U/SrOx-simulated fuels.

Effects of surface-roughness and -oxidation of REBCO conductor on turn-to-turn contact resistance

  • Y.S., Chae;H.M., Kim;Y.S., Yoon;T.W., Kim;J.H., Kim;S.H., Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.40-45
    • /
    • 2022
  • The electrical/thermal stabilities and magnetic field controllability of a no-insulation (NI) high-temperature superconducting magnet are characterized by contact resistance between turn-to-turn layers, and the contact resistance characteristics are determined by properties of conductor surface and winding tension. In order to accurately predict the electromagnetic characteristics of the NI coil in a design stage, it is necessary to control the contact resistance characteristics within the design target parameters. In this paper, the contact resistance and critical current characteristics of a rare-earth barium copper oxide (REBCO) conductor were measured to analyze the effects of surface treatment conditions (roughness and oxidation level) of the copper stabilizer layer in REBCO conductor. The test samples with different surface roughness and oxidation levels were fabricated and conductor surface analysis was performed using scanning electron microscope, alpha step surface profiler and energy dispersive X-ray spectroscopy. Moreover, the contact resistance and critical current characteristics of the samples were measured using the four-terminal method in a liquid nitrogen impregnated cooling environment. Compared with as-received REBCO conductor sample, the contact resistance values of the REBCO conductors, which were post-treated by the scratch and oxidation of the surface of the copper stabilizer layer, tended to increase, and the critical current values were decreased under certain roughness and oxidation conditions.

A Study on Bond Wire Fusing Analysis of GaN Amplifier and Selection of Current Capacity Considering Transient Current (GaN증폭기의 본드 와이어 용융단선 현상분석과 과도전류를 고려한 전류용량 선정에 대한 연구)

  • Woo-Sung, Yoo;Yeon-Su, Seok;Kyu-Hyeok, Hwang;Ki-Jun, Kim
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.537-544
    • /
    • 2022
  • This paper analyzes the occurrence and cause of bond wires fusing used in the manufacture of pulsed high power amplifiers. Recently GaN HEMT has been spotlight in the fields of electronic warfare, radar, base station and satellite communication. In order to produce the maximum output power, which is the main performance of the high-power amplifier, optimal impedance matching is required. And the material, diameter and number of bond wires must be determined in consideration of not only the rated current but also the heat generated by the transient current. In particular, it was confirmed that compound semiconductor with a wide energy band gap such as GaN trigger fusing of the bond wire due to an increase in thermal resistance when the design efficiency is low or the heat dissipation is insufficient. This data has been simulated for exothermic conditions, and it is expected to be used as a reference for applications using GaN devices as verified through IR microscope.