• Title/Summary/Keyword: electron microscope analysis

Search Result 1,021, Processing Time 0.035 seconds

Effect of Anode Voltage on Diamond-like Carbon Thin Film Using Linear Ion Source (Linear Ion Source를 이용한 Anode Voltage 변화에 따른 DLC 박막특성)

  • Kim, Wang-Ryeol;Jung, Uoo-Chang;Jo, Hyung-Ho;Park, Min-Suk;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.179-185
    • /
    • 2009
  • Diamond-like carbon(DLC) films were deposited by linear ion source(LIS)-physical vapor deposition method changing the anode voltages from 800 V to 1800 V, and characteristics of the films were investigated using residual stress tester, nano-indentation, micro raman spectroscopy, scratch tester and Field Emission Scanning Electron Microscope(FE-SEM). The results showed that the residual stress and hardness increased with increasing the ion energy up to anode voltage of 1400 V. It was also found that the content of $SP^3$ carbon increased with increasing the anode voltage $SP^3/SP^2$ ratio through investigation of $SP^3/SP^2$ ratio by the micro-raman analysis. From these results, it can be concluded that the physical properties of DLC films such as residual stress and hardness are increased with increasing the anode voltage. These results can be explained that 3-dimensional cross-links between carbon atoms and Dangling bond are enhanced and the internal compressive stress also increased with increasing the anode voltage. The optimal anode voltage is considered to be around 1400 V in these experimental conditions.

Formation of Calcareous Deposit on Steel Plate by using Waste Oyster Shell (강판상에 굴 패각을 이용한 탄산칼슘 피막의 형성)

  • Kim, Beomsoo;Kwon, Jaesung;Kim, Yeonwon;Lee, Myeonghoon;Yang, Jeonghyeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.531-535
    • /
    • 2017
  • Enormous amount of waste oyster-shell (OS) has a major disposal problem in coastal regions. OSs have attracted much attention for recycling, because these are mainly composed of calcium carbonate with rare impurities. In this study, we demonstrate the calcareous deposit films on steel plate by using OSs on the basic of cathodic protection technique. The composition of the OSs was analyzed by wavelength dispersive X-ray fluorescence spectrometer. Carbon dioxide gas was pumped into distilled water to make carbonic acid solution for dissolution of OS. The calcareous deposit was characterized by second electron microscope (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction. Corrosion rates were estimated by measurements of anodic polarization and immersion test. It is confirmed that calcareous deposits on steel plate are formed under all condition of cathodic protection by using waste OS from the SEM and EDX results. Calcareous deposits on steel by OS provide good corrosion resistance by acting as a barrier to oxygen supply to the steel surface.

Control of Microstructure on TiO2 Nanofibers for Photocatalytic Application (광촉매 응용을 위한 TiO2 나노 섬유의 미세구조 제어)

  • Lee, Chang-Gyu;Kim, Wan-Tae;Na, Kyeong-Han;Park, Dong-Cheol;Yang, Wan-Hee;Choi, Won-Youl
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.417-421
    • /
    • 2018
  • $TiO_2$ has excellent photocatalytic properties and several studies have reported the increase in its specific surface area. The structure of $TiO_2$ nanofibers indicates promising improved photocatalytic properties and these nanofibers can thus potentially be applied in air pollution sensors and pollutant removal filters. In this study, a $TiO_2$ nanofiber was fabricated by the electrospinning method. The fabrication processing factors such as the applied voltage, the distance between nozzle and collector, and the inflow rate of solution were controlled. The precursor was titanium (IV) isopropoxide and as-spun $TiO_2$ nanofibers were heated at $450^{\circ}C$ for 2 h to obtain an anatase crystalline structure. The microstructure was analyzed using field emission scanning electron microscope (FE-SEM) and X-ray diffraction analysis (XRD). The anatase phase was observed in the $TiO_2$ nanofibers after heat treatment. The diameter of $TiO_2$ nanofibers increased with the flow rate, but decreased with decreasing applied voltage and nozzle to collector distance. The diameter of $TiO_2$ nanofibers was controlled in the range of 364 nm to 660 nm. These nanofibers are expected to be very useful in photocatalytic applications.

Manufacturing and Characterization of PVDF/TiO2 Composite Nano Web with Improved β-phase (β-phase가 향상된 PVDF/TiO2 Nano Web 제조 및 특성 분석)

  • Bae, Sung Jun;Kim, Il Jin;Lee, Jae Yeon;Sur, Suk-Hun;Choi, Pil Jun;Sim, Jae Hak;Lee, Seung Geol;Ko, Jae Wang
    • Textile Coloration and Finishing
    • /
    • v.32 no.3
    • /
    • pp.167-175
    • /
    • 2020
  • In this study, the optimum conditions for manufacturing PVDF nano web according to various electrospinning conditions such as solution concentration and applied voltage conditions were confirmed. The optimum spinning conditions were studied by analyzing the changes in the radioactivity of PVDF/TiO2 nano web according to the TiO2 content and the content of β-phase closely related to the piezoelectric properties under established conditions. As a result, it was confirmed that the concentration of the spinning solution was 20 wt%, the applied voltage was 25 kV, and the TiO2 content was 5 phr. PVDF nano web and PVDF/TiO2 nano web were observed morphologies through Scanning Electron Microscope(SEM) analysis. Formation of β-phase by electrospinning was confirmed by Fourier transform infrared spectroscopy(FT-IR) and X-ray Diffractometer(XRD), and the effect of the trapped nano web structure on the piezoelectric properties was investigated.

Push-out bond strength and dentinal tubule penetration of different root canal sealers used with coated core materials

  • Sungur, Derya Deniz;Purali, Nuhan;Cosgun, Erdal;Calt, Semra
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.2
    • /
    • pp.114-120
    • /
    • 2016
  • Objectives: The aim of this study was to compare the push-out bond strength and dentinal tubule penetration of root canal sealers used with coated core materials and conventional gutta-percha. Materials and Methods: A total of 72 single-rooted human mandibular incisors were instrumented with NiTi rotary files with irrigation of 2.5% NaOCl. The smear layer was removed with 17% ethylenediaminetetraacetic acid (EDTA). Specimens were assigned into four groups according to the obturation system: Group 1, EndoRez (Ultradent Product Inc.); Group 2, Activ GP (Brasseler); Group 3, SmartSeal (DFRP Ltd. Villa Farm); Group 4, AH 26 (Dentsply de Trey)/gutta-percha (GP). For push-out bond strength measurement, two horizontal slices were obtained from each specimen (n = 20). To compare dentinal tubule penetration, remaining 32 roots assigned to 4 groups as above were obturated with 0.1% Rhodamine B labeled sealers. One horizontal slice was obtained from the middle third of each specimen (n = 8) and scanned under confocal laser scanning electron microscope. Tubule penetration area, depth, and percentage were measured. Kruskall-Wallis test was used for statistical analysis. Results: EndoRez showed significantly lower push-out bond strength than the others (p < 0.05). No significant difference was found amongst the groups in terms of percentage of sealer penetration. SmartSeal showed the least penetration than the others (p < 0.05). Conclusions: The bond strength and sealer penetration of resin-and glass ionomer-based sealers used with coated core was not superior to resin-based sealer used with conventional GP. Dentinal tubule penetration has limited effect on bond strength. The use of conventional GP with sealer seems to be sufficient in terms of push-out bond strength.

Microstructure properties with variation of doped amount $Pr_{2}O_{3}$ of BSCT ceramics ($Pr_{2}O_{3}$ 첨가량에 따른 BSCT 세라믹의 미세구조 특성)

  • Noh, Hyun-Ji;Lee, Sung-Gap;Park, Sang-Man;Yun, Sang-Eun;Kim, Ji-Eun;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1283-1284
    • /
    • 2007
  • The barium strontium calcium titanate((Ba,Sr,Ca)$TiO_3$) powders prepared by the sol-gel method and $MnCO_3$ as acceptor were mixed oxide method. The microstructure was investigated with variation of $Pr_{2}O_{3}$ amount. The BSCT powder and $Pr_{2}O_{3}$ were mixed with organic vehicle(Ferro. B75001). BSCT thick films were fabricated by the screen-printing method on alumina substrates. The bottom electrode was Pt and upper electrode was Ag, respectively. All BSCT thick films were sintered at $1420^{\circ}C$, for 2h. The result of the differential thermal analysis(DTA), exothermic peak at around $654^{\circ}C$ due to the formation of the polycrystalline perovskite phase. In the X-ray diffraction(XRD) patterns, all BSCT thick films showed the typical perovskite polycrystalline structure and no pyrochlore phase was dbserved. The microstructure investigated by scanning electron microscope(SEM). Pore and grain size of BSCT thick films were decreased with increasing amount of $Pr_{2}O_{3}$ dopant. And the average grain size and thickness of BSCT thick films doped with 0.1 mol% $Pr_{2}O_{3}$ was $3.09{\mu}m$, $60{\mu}m$, respectively. The relative dielectric constant decreased and dielectric loss decreased with increasing amount of $Pr_{2}O_{3}$ dopant, the values of the BSCT thick films no doped with $Pr_{2}O_{3}$ were 7443 and 4 % at 1 kHz, respectively.

  • PDF

Optimization of the deposition condition on hetero-epitaxial As-doped ZnO thin films by pulsed laser deposition (PLD를 이용한 hetero-epitaxial As-doped ZnO 박막 증착 조건의 최적화)

  • Lee, Hong-Chan;Jung, Youn-Sik;Choi, Won-Kook;Park, Hun;Shim, Kwang-Bo;Oh, Young-Jei
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.207-210
    • /
    • 2005
  • In order to investigate the influence of the homo buffer layer on the microstructure of the ZnO thin film, undoped ZnO buffer layer were deposited on sapphire (0001) substrates by ultra high vaccum pulsed laser deposition (UHV-PLD) and molecular beam eiptaxy (MBE). After high temperature annealing at $600^{\circ}C$ for 30min, undoped ZnO buffer layer was deposited with various oxygen pressure (35~350mtorr). On the grown layer of undoped ZnO, Arsenic-doped(l, 3wt%) ZnO layers were deposited by UHV-PLD. The optical property of the ZnO was analyzed by the photoluminescence (PL) measurement. From $\Theta-2\Theta$ XRD analysis, all the films showed strong (0002) diffraction peak, and this indicates that the grains grew uniformly with the c-axis perpendicular to the substrate surface. Field emission scanning electron microscope (FE-SEM) revealed that microstructures of the ZnO were varied with oxygen pressure, arsenic doping level, and the deposition method of undoped ZnO buffer layers. The films became denser and smoother in the cases of introducing MBE-buffer layer and lower oxygen pressure during As-doped ZnO deposition. Higher As-doping concentration enhanced the columnar-character of the films.

  • PDF

Analysis of the Formation of Rear Contact for Monocrystalline Silicon Solar Cells (단결정 실리콘 태양전지의 후면 전극형성에 관한 비교분석)

  • Kwon, Hyuk-Yong;Lee, Jae-Doo;Kim, Min-Jeong;Lee, Soo-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.571-574
    • /
    • 2010
  • Surface recombination loss should be reduced for high efficiency of solar cells. To reduce this loss, the BSF (back surface field) is used. The BSF on the back of the p-type wafer forms a p+layer, which prevents the activity of electrons of the p-area for the rear recombination. As a result, the leakage current is reduced and the rear-contact has a good Ohmic contact. Therefore, the open-circuit-voltage (Voc) and fill factor (FF) of solar cells are increased. This paper investigates the formation of the rear contact process by comparing aluminum-paste (Al-paste) with pure aluminum-metal(99.9%). Under the vacuum evaporation process, pure aluminum-metal(99.9%) provides high conductivity and low contact resistance of $4.2\;m{\Omega}cm$, but It is difficult to apply the standard industrial process to it because high vacuum is needed, and it's more expensive than the commercial equipment. On the other hand, using the Al-paste process by screen printing is simple for the formation of metal contact, and it is possible to produce the standard industrial process. However, Al-paste used in screen printing is lower than the conductivity of pure aluminum-metal(99.9) because of its mass glass frit. In this study, contact resistances were measured by a 4-point probe. The contact resistance of pure aluminum-metal was $4.2\;m{\Omega}cm$ and that of Al-paste was $35.69\;m{\Omega}cm$. Then the rear contact was analyzed by scanning electron microscope (SEM).

Study of the Tribological Characteristics Based on the Hardness of the Brake Disk between the Sintered Metallic Friction Material and the Heat-resisting Steel Disks (디스크 경도에 따른 소결마찰재와 내열강 디스크의 마찰·마모 특성)

  • Na, Sun Joo;Park, Hyoung Chul;Kim, Sang Ho
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.42-49
    • /
    • 2015
  • Because of the growing need for high-speed transport options such as trains and aircraft, there is increasing demand for technology related to high-speed trains. Among them, braking systems are important in high-speed trains in terms of reliability. Especially, the disk brake system, in use in most high-speed trains, transforms kinetic energy into thermal energy and noise. Therefore, the material properties of both the friction materials and disks are expected to influence the tribological characteristics. In this paper, the tribological characteristics depend on the hardness of the brake disks between the Cu-based sintered metallic friction material and the heat-treated heat-resisting steel disks. A lab-scale dynamometer used to perform braking tests at a variety of braking speeds using dry conditions. The test results revealed that the hardness of the disks affects the friction coefficients, friction stabilities, and wear rates. Thus, the brake system using the heat-resisting steel disk requires proper heat-treatment. These differences are considered to be caused by the change in tribological mechanisms and the generation of an oxide layer on the friction surfaces. The oxide layers on the friction surfaces are confirmed to Fe2O3 by x-ray diffraction (XRD) and scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) analysis.

Physical Properties of Polymer Concrete Composite Using Rapid-Cooled Steel Slag (I) (Use of Rapid-Cooled Steel Slag in Replacement of Fine Aggregate) (급냉 제강슬래그를 사용한 폴리머 콘크리트 복합재료의 물성(I) (잔골재를 급냉 제강슬래그로 대체 사용))

  • Hwang, Eui-Hwan;Lee, Choul-Ho;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.210-216
    • /
    • 2012
  • For the recycling of rapid-cooled steel slag, various specimens were prepared with the various replacement ratios of the rapid-cooled steel slag and the addition ratios of polymer binders. The physical properties of these specimens were then investigated by absorption test, compressive strength test, flexural strength test and hot water resistance test, and the pore and the micro-structure analysis was performed using scanning electron microscope. Results showed that the flexural strength increased with the increase of rapid-cooled steel slag and polymer binder, but the compressive strength showed a maximum strength at a certain proportion. By the hot water resistance test, compressive strength and flexural strength decreased remarkably and the total pore volume increased but the pore diameter decreased. SEM observation of the structure before the hot water resistance test revealed a very compact infusion of structure but the decomposition or thermal degradation appeared in polymer binders when observed after the hot water resistance test.