• Title/Summary/Keyword: electron microscope analysis

Search Result 1,020, Processing Time 0.025 seconds

Evaluation of Mode II Interlaminar Fracture Toughness for Carbon Fabric/Epoxy Composite for Tilting Train (틸팅차량용 탄소섬유직물/에폭시 복합재의 모우드 II 층간파괴인성 평가)

  • Lee Eun Dong;Yoon Sung Ho;Shin Kwang Bok;Jeong Jong Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.189-192
    • /
    • 2004
  • In this study, mode II interlaminar fracture phenomena of carbon fabric/epoxy composite for tilting train were investigated. The end notched flexural specimen containing an artificial crack with the thickness of 12.5fl11l was used. The mode II interlaminar fracture toughness was evaluated through a three point bending test and the fractured surfaces were examined through a scanning electron microscope. The experimental results obtained in this study would be applicable in the design and structural analysis of the composite structures.

  • PDF

Rigid-Plastic Finite Element Analysis of Burr Formation at the Exit Stage in Orthogonal Cutting (2차원 절삭에서 공구이탈시 발생하는 버에 관한 강소성 유한요소해석)

  • 고대철;김병민;고성림
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.4
    • /
    • pp.125-133
    • /
    • 1998
  • The objective of this study is to propose a new approach for modelling of burr formation process during orthogonal cutting when the tool exits the workpiece. This approach is based on the rigid-plastic finite element method combined with the ductile fracture criterion and the element kill method. This approach is applied to orthogonal cutting process to predict the fracture location and the fracture angle as well as the cutting force. To validate this approach, orthogonal cutting tests inside SEM(scanning electron microscope) at very low speed are carried out using A16061-T6 to observe the behavior of the material during the chip and the burr formation. The results of the experiment are compared with those of the finite element simulation.

  • PDF

Fractographic Analysis Method of Fatigue Fracture Surface under Program and Random Loading for Aluminum Alloy (알루미늄 합금의 랜덤하중 하에서 발생한 피로파면 해석 방법)

  • 김상태;최성종;양현태;이희원
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2055-2060
    • /
    • 2003
  • Striation is a typical pattern observed on the fatigue fracture surface and the spacing is known to correspond to a macroscopic fatigue crack growth rate, and many models for the predict in the formation of such striation have been proposed. However, these theories and methods can't be applied under random loading spectrum. In this study, the fatigue tests were carried out on aluminum alloy under random loading spectrum. The fatigue fracture surfaces were observed in the scanning electron microscope (SEM) and great quantities of SEM micrographs were synthesized and saved in computer system. The space and morphology of several large-scale striations, which are expected to from at the relatively greater load range in loading block, were observed. The crack length for each loading blocks was decided in consideration of regularity and repetition of those striations. It is shown that the applicability of fractographic methods on the fatigue fracture surface under random loading spectrum.

Effect of elevated temperature on physico-mechanical properties of metakaolin blended cement mortar

  • Morsy, M.S.;Rashad, A.M.;El-Nouhy, H.A.
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • An experimental investigation was conducted to evaluate the performance of mortars with and without Metakaolin (MK) exposed to elevated temperatures $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$ for two hours. The binder to sand ratio was kept constant (1:5.23). The ordinary Portland cement (OPC) was replaced with MK at 0%, 5%, 10% 20% and 30%. All mixtures were designed to have a flow of $94{\pm}5%$. The compressive strength of mortars before and after exposure to elevated temperature was determined. The formation of various decomposition phases were identified using X-ray diffractometry (XRD) and differential thermal analysis (DTA). The microstructure of the mortars was examined using scanning electron microscope (SEM). Test results indicated that MK improves the compressive strength before and after exposure to elevated temperature and that the 20% cement replacement of MK is the optimum percentage.

Successive recycled coarse aggregate effect on mechanical behavior and microstructural characteristics of concrete

  • Ashish, Deepankar K.;Saini, Preeti
    • Computers and Concrete
    • /
    • v.21 no.1
    • /
    • pp.39-46
    • /
    • 2018
  • With the increase in industrialization and urbanization, growing demand has enhanced rate of new constructions and old demolitions. To avoid serious environmental impacts and hazards recycled concrete aggregates (RCA) is being adopted in all over the world. This paper investigates successive recycled coarse aggregates (SRCA) in which old concrete made with RCA in form of concrete cubes was used. The cubes were crushed to prepare new concrete using aggregates from crushing of old concrete, used as SRCA. The mechanical behavior of concrete was determined containing SRCA; the properties of SRCA were evaluated and then compared with natural aggregates (NA). Replacement of NA with SRCA in ratio upto 100% by weight was studied for workability, mechanical properties and microstructural analysis. It was observed that with the increase in replacement ratio workability and compressive strength decreased but in acceptable limits so SRCA can be used in low strength concretes rather than high strength concrete structures.

Preparation and Erosion Properties of Reaction-Bonded SiC Reinforced by Carbon Fiber (탄소섬유로 강화된 반응소결 SiC 제조 및 Erosion 특성)

  • 송진웅;임대순;김형욱
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.258-264
    • /
    • 1998
  • Three kinds of reation-bonded SiC that reaction-bonded SiC(RBSC), RBSC reinforced by carbon fiber and RBSC reinforced by activated carbon fiber were prepared for investigating the change of erosion properties. The characteristics of microstructures and the phases have been investigated by using scanning electron microscope and XRD analysis. The hardness test, toughness test and erosion test were camed out. In the cases with no carbon fiber, those kind of specimens had the highest result of hardness test and the lowest result of toughness test. With the increase of carbon fiber content, The hardness and the weight loss were decreased but the toughness was increased in the cases with carbon fiber In the cases with activated carbon fiber those specimens had the highest result of toughness test and the lowest result of hardness test with 30% contents of activated carbon fiber.

  • PDF

Preparation and Erosion Properties of Reaction-Bonded SiC Reinforced by Carbon Fiber (탄소섬유로 강화된 반응소결 SiC 제조 및 Erosion 특성)

  • 송진웅;임대순;김형욱
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.59-67
    • /
    • 1999
  • Three kinds of reation-bonded SiC that reaction-bonded SiC(RBSC), RBSC reinforced by carbon fiber and RBSC reinforced by activated carbon fiber were prepared for investigating the change of erosion properties. The characteristics of microstructures and the phases have been investigated by using scanning electron microscope and XRD analysis. The hardness test toughness test and erosion test was carried out. In the cases with no carbon fiber, those kind of specimens had the highest value of hardness and the lowest value of toughness. With the increase of carbon fiber content the hardness and the weight loss were decreased, but the toughness was increased in the cases with carbon fiber. In the cases with activated carbon fiber specimens had the highest value of toughness and the lowest value of hardness with 30% contents of activated carbon fiber.

Study on Manufacturing Desulfurization Sorbent using Eggshell (달걀 껍질을 재활용한 탈황제의 제조에 관한 연구)

  • 이병호;이봉헌;박흥재;김우성
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.693-696
    • /
    • 1998
  • We tried to develope a desulfurization sorbent using eggshell for recycling, practicability, and economic development. The calcination character of the eggshell was examined by thermal gravimetric analysis and qualitative-quantitative character by X-ray diffractometer(XRD) and scanning electron microscope(SEM). The calcination was occurred easily in the case of eggshell and its form was changed from calcite($CaCO_3$) to lime(CaO). The grain and pore sizes of the calcined sample after base-treatment were larger and more crystallic. The adsorption ability of the eggshell was two- to six-times in the calcination temperature more than in the grain size. Therefore, the eggshell was thought to be usable as the desulfurization sorbent.

  • PDF

A Study on Degradation Behavior of 1Cr-1Mo-0.25V Steel (1Cr-1Mo-0.25V 강의 열화거동에 관한 연구)

  • 석창성;구재민;김동중;안하늘;박은수
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.8-14
    • /
    • 2000
  • The remaining life estimation for the aged components in power plants as well as chemical plants are very important because mechanical properties of the components are degraded with time of service exposure in the high temperature. Since it is difficult to take specimens from the operating components to evaluate mechanical properties of components, accelerated aging technique are needed to estimate and analyse the material degradation. In the this study, test materials with 4 different degradation levels were prepared by isothermal aging heat treatment at $630^{\circ}C$. And tensile test, $k_{IC}$ test, hardness test and Scanning Electron Microscope analysis were performed in order to evaluate the degradation of 1Cr-1Mo-0.25V steels.

  • PDF

Fabrication and characterization of polysulfone ultrafiltration membrane using polyethylene glycol and tartaric acid: morphology and performance in protein separation

  • Sharma, N.;Purkait, M.K.
    • Membrane and Water Treatment
    • /
    • v.8 no.6
    • /
    • pp.591-612
    • /
    • 2017
  • Increase in the hydrophilicity (HPCT) of polysulfone (PS) membrane and subsequently decrease in fouling can be achieved by surface modification of PS based membranes. Therefore, in this work, ultrafiltration membranes with increased HPCT were prepared using the enantiomeric tartaric acid (D-TA) and racemic tartaric acid (DL-TA). Phase inversion technique was used for the preparation of polyethylene glycol and TA blended PS membrane. Morphological analysis of the fabricated membranes was done by scanning electron microscope and atomic force microscopy. Bovine serum albumin (BSA) solution was taken for finding the permeation and rejection behavior of prepared membranes. Maximum BSA rejection was increased by 70.5% for the modified membrane.