• Title/Summary/Keyword: electron metabolism

Search Result 115, Processing Time 0.027 seconds

Gene Analysis Related Energy Metabolism of Leaf Expressed Sequence Tags Database of Korean Ginseng (Panax ginseng C.A. Meyer) (고려인삼(Panax ginseng C.A, Meyer)의 잎 ESTs database에서 Energy 대사 관련 유전자 분석)

  • Lee Jong-Il;Yoon Jae-Ho;Song Won-Seob;Lee Bum-Soo;In Jun-Gyo;Kim Eun-Jeong;Yang Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.19 no.1
    • /
    • pp.174-179
    • /
    • 2006
  • A cDNA library was constructed from leaf samples of 4-year-old Panax ginseng cultured in a field. 3,000 EST from a size selected leaf cDNA library were analyzed. The 349 of 2,896 cDNA clones has related with energy metabolism genes. The 349 known genes were categorized into nine groups according to their functional classification, aerobic respiration(48.4%), accessory proteins of electron transport and membrane associated energy conservation(17.2%), glycolysis and gluconeogenesis(3.4%), electron transport and membrane associated energy conservation(2.9%), respiration(2.0%), glycolysis methylglyoxal bypass(1.7%), metabolism of energy reserves(0.6%) and alcohol fermentation(0.3%).

Cancer Energy Metabolism: Shutting Power off Cancer Factory

  • Kim, Soo-Youl
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.39-44
    • /
    • 2018
  • In 1923, Dr. Warburg had observed that tumors acidified the Ringer solution when 13 mM glucose was added, which was identified as being due to lactate. When glucose is the only source of nutrient, it can serve for both biosynthesis and energy production. However, a series of studies revealed that the cancer cell consumes glucose for biosynthesis through fermentation, not for energy supply, under physiological conditions. Recently, a new observation was made that there is a metabolic symbiosis in which glycolytic and oxidative tumor cells mutually regulate their energy metabolism. Hypoxic cancer cells use glucose for glycolytic metabolism and release lactate which is used by oxygenated cancer cells. This study challenged the Warburg effect, because Warburg claimed that fermentation by irreversible damaging of mitochondria is a fundamental cause of cancer. However, recent studies revealed that mitochondria in cancer cell show active function of oxidative phosphorylation although TCA cycle is stalled. It was also shown that blocking cytosolic NADH production by aldehyde dehydrogenase inhibition, combined with oxidative phosphorylation inhibition, resulted in up to 80% decrease of ATP production, which resulted in a significant regression of tumor growth in the NSCLC model. This suggests a new theory that NADH production in the cytosol plays a key role of ATP production through the mitochondrial electron transport chain in cancer cells, while NADH production is mostly occupied inside mitochondria in normal cells.

Hydrogen Metabolism in Clostridium acetobutylicum Fermentation

  • J.Gregory Zeikus
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.248-254
    • /
    • 1992
  • The initial growth of Clostridium acetobutylicum was not inhibited by 1 atm of H$_2$ while H$_2$ reduced glucose consumption in a solventogenic culture of a phosphate limited 2-stage chemostat. Under 1 atm of H$_2$, a solventogenic culture consumed hydrogen, but an acidogenic culture produced hydrogen. H$_2$ consumption by the solventogenic culture was enhanced by the addition of 5 mM neutral red, an artificial electron carrier with a redox potential of -325 mV. Hydrogenase activity, measured in both directions of production and consumption, showed that activity coupled with methyl viologen is higher in an acidogenic culture than in a solventogenic culture, and that the two cultures have similar activities for methylene blue reduction. The solventogenic culture showed a higher activity coupled with neutral red than the acidogenic culture. From these results, it is hypothesized that hydrogen producing hydrogenase activity is high during the acidogenic phase, and decreases as solventogenesis starts, and that the solventogenic culture produces a second hydrogenase which uses an electron carrier other than ferredoxin. This hypothesis was supported by the fact that enzyme activities involved in electron flow can be coupled to neutral red, indepedent of ferredoxin, and that neutral red addition to the fermentation system increased butanol yield, with a decrease in production of less reduced fermentation products, and $H^2$.

  • PDF

Gene Expression Profiling of Liver and Mammary Tissues of Lactating Dairy Cows

  • Baik, M.;Etchebarne, B.E.;Bong, J.;VandeHaar, M.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.871-884
    • /
    • 2009
  • Gene expression profiling is a useful tool for identifying critical genes and pathways in metabolism. The objective of this study was to determine the major differences in the expression of genes associated with metabolism and metabolic regulation in liver and mammary tissues of lactating cows. We used the Michigan State University bovine metabolism (BMET) microarray; previously, we have designed a bovine metabolism-focused microarray containing known genes of metabolic interest using publicly available genomic internet database resources. This is a high-density array of 70mer oligonucleotides representing 2,349 bovine genes. The expression of 922 genes was different at p<0.05, and 398 genes (17%) were differentially expressed by two-fold or more with 222 higher in liver and 176 higher in mammary tissue. Gene ontology categories with a high percentage of genes more highly expressed in liver than mammary tissues included carbohydrate metabolism (glycolysis, glucoenogenesis, propanoate metabolism, butanoate metabolism, electron carrier and donor activity), lipid metabolism (fatty acid oxidation, chylomicron/lipid transport, bile acid metabolism, cholesterol metabolism, steroid metabolism, ketone body formation), and amino acid/nitrogen metabolism (amino acid biosynthetic process, amino acid catabolic process, urea cycle, and glutathione metabolic process). Categories with more genes highly expressed in mammary than liver tissue included amino acid and sugar transporters and MAPK, Wnt, and JAK-STAT signaling pathways. Real-time PCR analysis showed consistent results with those of microarray analysis for all 12 genes tested. In conclusion, microarray analyses clearly identified differential gene expression profiles between hepatic and mammary tissues that are consistent with the differences in metabolism of these two tissues. This study enables understanding of the molecular basis of metabolic adaptation of the liver and mammary gland during lactation in bovine species.

Humic Substances Act as Electron Acceptor and Redox Mediator for Microbial Dissimilatory Azoreduction by Shewanella decolorationis S12

  • Hong, Yi-Guo;Guo, Jun;Xu, Zhi-Cheng;Xu, Mei-Ying;Sun, Guo-Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.428-437
    • /
    • 2007
  • The potential for humic substances to serve as terminal electron acceptors in microbial respiration and the effects of humic substances on microbial azoreduction were investigated. The dissimilatory azoreducing microorganism Shewanella decolorationis S12 was able to conserve energy to support growth from electron transport to humics coupled to the oxidation of various organic substances or $H_2$. Batch experiments suggested that when the concentration of anthraquinone-2-sulfonate (AQS), a humics analog, was lower than 3 mmol/l, azoreduction of strain S12 was accelerated under anaerobic condition. However, there was obvious inhibition to azoreduction when the concentration of the AQS was higher than 5 mmol/l. Another humics analog, anthraquinone-2-sulfonate (AQDS), could still prominently accelerate azoreduction, even when the concentration was up to 12 mmol/l, but the rate of acceleration gradually decreased with the increasing concentration of the AQDS. Toxic experiments revealed that AQS can inhibit growth of strain S12 if the concentration past a critical one, but AQDS had no effect on the metabolism and growth of strain S12 although the concentration was up to 20 mmol/l. These results demonstrated that a low concentration of humic substances not only could serve as the terminal electron acceptors for conserving energy for growth, but also act as redox mediator shuttling electrons for the anaerobic azoreduction by S. decolorationis S12. However, a high concentration of humic substances could inhibit the bacterial azoreduction, resulting on the one hand from the toxic effect on cell metabolism and growth, and on the other hand from competion with azo dyes for electrons as electron acceptor.

Urinary Metabolism and Excretion of Carbinoxamine after Oral Administration to Man

  • Jung, Byung-Hwa;Chung, Bong-Chul;Park, Jong-Sei
    • Biomolecules & Therapeutics
    • /
    • v.4 no.3
    • /
    • pp.251-256
    • /
    • 1996
  • The metabolism of carbinoxamine, 2-[(4-chlorophenyl)-2-pyridinyl-methoxy]-N, N-dimethylethaneamine, was studied in adult male volunteers after an oral dose of 15 mg. Solvent extracts of urine obtained with or without enzyme hydrolysis were analyzed by gas chromatography-mass spectrometry after derivatization with MSTFA/TMSCl (N-methyl-N-trimethylsilyltrifluoroacetamide/trimethyl chlorosilane). The structures of metabolites were determined based on the electron impact (EI) and chemical ionization (CI) mass spectra. Nonconjugated metabolites identified in the urine were carbinoxamine, nor-carbinoxamine, and bits-nor-carbinoxamine. Parent drug, nor-carbinoxamine, and bits-nor-carbinoxamine were also detected as conjugated forms. These metabolites observed in human urine were different from those previously reported in the rat. Urinary excretions of carbinoxamine were reached to maxima in 4 hours after drug administration with 4.9%-8.1% and 2.5-4.2% of the dose excreted during 24 h as carbinoxamine and its glucuronide, respectively.

  • PDF

Oral administration of ginseng berry concentrate improves lactate metabolism and increases endurance performance in mice

  • Eun-Ju Jin;Shibo Wei;Yunju Jo;Thanh T. Nguyen;Moongi Ji;Man-Jeong Paik;Jee-Heon Jeong;Se Jin Im;Dongryeol Ryu
    • BMB Reports
    • /
    • v.56 no.6
    • /
    • pp.353-358
    • /
    • 2023
  • In the present study, to determine the efficacy of oral supplementation of ginseng berry extracts in augmenting exercise performance and exercise-associated metabolism, male mice were given orally 200 and 400 mg/kg of body weight (BW) of GBC for nine weeks. Although there are no differences in pre-exercise blood lactate levels among (1) the control group that received neither exercise nor GBC, (2) the group that performed only twice-weekly endurance exercise, and (3) and (4) the groups that combined twice-weekly endurance exercise with either 200 or 400 mg/kg GBC, statistically significant reductions in post-exercise blood lactate levels were observed in the groups that combined twice-weekly endurance exercise with oral administration of either 200 or 400 mg/kg GBC. Histological analysis showed no muscle hypertrophy, but transcriptome analysis revealed changes in gene sets related to lactate metabolism and mitochondrial function. GBC intake increased nicotinamide adenine dinucleotide levels in the gastrocnemius, possibly enhancing the mitochondrial electron transport system and lactate metabolism. Further molecular mechanisms are needed to confirm this hypothesis.

Electrochemical Activation of Nitrate Reduction to Nitrogen by Ochrobactrum sp. G3-1 Using a Noncompartmented Electrochemical Bioreactor

  • Lee, Woo-Jin;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.836-844
    • /
    • 2009
  • A denitrification bacterium was isolated from riverbed soil and identified as Ochrobactrum sp., whose specific enzymes for denitrification metabolism were biochemically assayed or confirmed with specific coding genes. The denitrification activity of strain G3-1 was proportional to glucose/nitrate balance, which was consistent with the theoretical balance (0.5). The modified graphite felt cathode with neutral red, which functions as a solid electron mediator, enhanced the electron transfer from electrode to bacterial cell. The porous carbon anode was coated with a ceramic membrane and cellulose acetate film in order to permit the penetration of water molecules from the catholyte to the outside through anode, which functions as an air anode. A non-compartmented electrochemical bioreactor (NCEB) comprised of a solid electron mediator and an air anode was employed for cultivation of G3-1 cells. The intact G3-1 cells were immobilized in the solid electron mediator, by which denitrification activity was greatly increased at the lower glucose/nitrate balance than the theoretical balance (0.5). Metabolic stability of the intact G3-1 cells immobilized in the solid electron mediator was extended to 20 days, even at a glucose/nitrate balance of 0.1.

Electron Flow Shift in Clostridium acetobutylicum Fermentation by Lactate

  • Kwon, Gi-Seok;Kim, Byung-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.4
    • /
    • pp.261-265
    • /
    • 1991
  • Clostridium acetobutylicum produced more butanol in the medium containing corn steep liquor (CSL) than in a complex medium without CSL Addition of CSL to CAB medium increased sugar consumption by the bacterium. Similar results were obtained in the fermentation using CAB medium containing lactate. The ratio for the butanol produced to acetone of the control culture was 1.8, whilst that of the culture containing 44 mM lactate was 5.2. From these results it is hypothesized that lactate functions as an electron flow modulator in the fermentation. This finding has been utilized for the successful butanol fermentation of a non-corn based agricultural byproduct, palm oil waste.

  • PDF

The Effect of Codium fragile (Chlorophyta) Extract on Hepatic Dysfunction and Hyperlipidemia in Rats

  • Park, Kap-Joo;Hwang, Eun-Kyoung;Park, Chan-Sun;Cho, Myung-Hwan;Lee, Jae-Seok
    • Korean Journal of Environmental Biology
    • /
    • v.28 no.2
    • /
    • pp.79-85
    • /
    • 2010
  • To examine the effect of Codium fragile on blood cholesterol and lipid metabolism, hyperlipidemia was induced in experimental animal rats through the administration of a hypercholesterolemic diet. Codium fragile powder was then administered to the rats for 5 weeks, after which, blood biochemical changes such as blood cholesterol, Aspartate Aminotransferase (AST: serum SGOT) and Alanine Aminotransferase (ALT: serum SGPT) enzyme activity, etc. were determined. And histological changes in liver cells were examined using an electron microscope. Codium fragile treatment resulted in a significant reduction of the levels of total cholesterol, blood triglyceride and low-density cholesterol (LDL. Chol) compared to the control rats. In contrast the expression levels of high-density cholesterol (HDL. chol.) were increased. The AST value of the Codium fragile administration group was significantly reduced and the blood ALT value of the Codium fragile group showed a significant decrease in comparison to the negative control group. In summary, this study demonstrated the beneficial possibilities of Codium fragile in improving the abnormality of lipid metabolism caused by liver cell damage and hyperlipidemia.