• Title/Summary/Keyword: electron beam

Search Result 2,207, Processing Time 0.036 seconds

Formation of Al0.3Ga0.7As/GaAs Multiple Quantum Wells on Silicon Substrate with AlAsxSb1-x Step-graded Buffer (AlAsxSb1-x 단계 성분 변화 완충층을 이용한 Si (100) 기판 상 Al0.3Ga0.7As/GaAs 다중 양자 우물 형성)

  • Lee, Eun Hye;Song, Jin Dong;Yoen, Kyu Hyoek;Bae, Min Hwan;Oh, Hyun Ji;Han, Il Ki;Choi, Won Jun;Chang, Soo Kyung
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.313-320
    • /
    • 2013
  • The $AlAs_xSb_{1-x}$ step-graded buffer (SGB) layer was grown on the Silicon (Si) substrate to overcome lattice mismatch between Si substrate and $Al_{0.3}Ga_{0.7}As$/GaAs multiple quantum wells (MQWs). The value of root-mean-square (RMS) surface roughness for 5 nm-thick GaAs grown on $AlAs_xSb_{1-x}$ step-graded buffer layer was ~1.7 nm. $Al_{0.3}Ga_{0.7}As$/GaAs MQWs with AlAs/GaAs short period superlattice (SPS) were formed on the $AlAs_xSb_{1-x}$/Si substrate. Photoluminescence (PL) peak at 10 K for the $Al_{0.3}Ga_{0.7}As$/GaAs MQW structure showed relatively low intensity at ~813 nm. The RMS surface roughness of the $Al_{0.3}Ga_{0.7}As$/GaAs MQW structure was ~42.9 nm. The crystal defects were observed on the cross-sectional transmission electron microscope (TEM) images of the $Al_{0.3}Ga_{0.7}As$/GaAs MQW structure. The decrease of PL intensity and increase of RMS surface roughness would be due to the formation of the crystal defects.

Radiation Therapy in Elderly Skin Cancer (노령의 피부암에서 방사선치료)

  • Kim, Jin-Hee
    • Radiation Oncology Journal
    • /
    • v.26 no.2
    • /
    • pp.113-117
    • /
    • 2008
  • Purpose: To evaluate the long term results(local control, survival, failure, and complications) after radiation therapy for skin cancer in elderly patients. Material and Methods: The study spanned from January 1990 to October 2002. Fifteen elderly patients with skin cancer were treated by radiotherapy at the Keimyung University Dongsan Medical Center. The age distribution of the patients surveyed was 72 to 95 years, with a median age of 78.8 years. The pathologic classification of the 15 patients included squamous cell carcinoma(10 patients), basal cell carcinoma(3 patients), verrucous carcinoma(1 patient) and skin adnexal origin carcinoma(1 patient). The most common tumor location was the head(13 patients). The mean tumor diameter was 4.9 cm(range 2 to 9 cm). The radiation dose was delivered via an electron beam of 6 to 15 MeV. The dose range was adjusted to the tumor diameter and depth of tumor invasion. The total radiation dose ranged from $50{\sim}80$ Gy(mean: 66 Gy) with a 2 Gy fractional dose prescribed to the 80% isodose line once a day and 5 times a week. One patient with lymph node metastasis was treated with six MV photon beams boosted with electron beams. The length of the follow-up periods ranged from 10 to 120 months with a median follow-up period of 48 months. Results: The local control rates were 100%(15/15). In addition, the five year disease free survival rate(5YDFS) was 80% and twelve patients(80%) had no recurrence and skin cancer recurrence occurred in 3 patients(20%). Three patients have lived an average of 90 months($68{\sim}120$ months) without recurrence or metastasis. A total of 9 patients who died as a result of other causes had a mean survival time of 55.8 months after radiation therapy. No severe acute or chronic complications were observed after radiation therapy. Only minor complications including radiation dermatitis was treated with supportive care. Conclusion: The results suggest that radiation therapy is an effective and safe treatment method for the treatment of skin cancer in elderly patients who achieved a good survival rate and few minor complications.

Reliability of a Cobalt Silicide on Counter Electrodes for Dye Sensitized Solar Cells (코발트실리사이드를 이용한 염료감응형 태양전지 상대전극의 신뢰성 평가)

  • Kim, Kwangbae;Park, Taeyeul;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.1-7
    • /
    • 2017
  • Cobalt silicide was used as a counter electrode in order to confirm its reliability in dye-sensitized solar cell (DSSC) devices. 100 nm-Co/300 nm-Si/quartz was formed by an evaporator and cobalt silicide was formed by vacuum heat treatment at $700^{\circ}C$ for 60 min to form approximately 350 nm-CoSi. This process was followed by etching in $80^{\circ}C$-30% $H_2SO_4$ to remove the cobalt residue on the cobalt silicide surface. Also, for the comparison against Pt, we prepared a 100 nm-Pt/glass counter electrode. Cobalt silicide was used for the counter electrode in order to confirm its reliability in DSSC devices and maintained for 0, 168, 336, 504, 672, and 840 hours at $80^{\circ}C$. The photovoltaic properties of the DSSCs employing cobalt silicide were confirmed by using a simulator and potentiostat. Cyclic-voltammetry, field emission scanning electron microscopy, focused ion beam scanning electron microscopy, and energy dispersive spectrometry analyses were used to confirm the catalytic activity, microstructure, and composition, respectively. The energy conversion efficiency (ECE) as a function of time and ECE of the DSSC with Pt and CoSi counter electrodes were maintained for 504 hours. However, after 672 hours, the ECEs decreased to a half of their initial values. The results of the catalytic activity analysis showed that the catalytic activities of the Pt and CoSi counter electrodes decreased to 64% and 57% of their initial values, respectively(after 840 hours). The microstructure analysis showed that the CoSi layer improved the durability in the electrolyte, but because the stress concentrates on the contact surface between the lower quartz substrate and the CoSi layer, cracks are formed locally and flaking occurs. Thus, deterioration occurs due to the residual stress built up during the silicidation of the CoSi counter electrode, so it is necessary to take measures against these residual stresses, in order to ensure the reliability of the electrode.

Parotid Gland Sparing Radiotherapy Technique Using 3-D Conformal Radiotherapy for Nasopharyngeal CarcinomB (비인강암에서 방사선 구강 건조증 발생 감소를 위한 3차원 입체조형치료)

  • Lim Jihoon;Kim Gwi Eon;Keum Ki Chang;Suh Chang Ok;Lee Sang-wook;Park Hee Chul;Cho Jae Ho;Lee Sang Hoon;Chang Sei Kyung;Loh Juhn Kyu
    • Radiation Oncology Journal
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2000
  • Purpose : Although using the high energy Photon beam with conventional Parallel-opposed beams radiotherapy for nasopharyngeal carcinoma, radiation-induced xerostomia is a troublesome problem for patients. We conducted this study to explore a new parotid gland sparing technique in 3-D conformal radiotherapy (3-D CRT) in an effort to prevent the radiation-induced xerostomia. Materials and Methods : We peformed three different planning for four clinically node-negative nasopharyngeal cancer patients with different location of tumor(intracranial extension, nasal cavity extension, oropharyngeal extension, parapharyngeal extension), and intercompared the plans. Total prescription dose was 70.2 Gy to the isocenter. For plan-A, 2-D parallel opposing fields, a conventional radiotherapy technique, were employed. For plan-B, 2-D parallel opposing fields were used up until 54 Gy and afterwards 3-D non-coplanar beams were used. For plan-C, the new technique, 54 Gy was delivered by 3-D conformal 3-port beams (AP and both lateral ports with wedge compensator; shielding both superficial lobes of parotid glands at the AP beam using BEV) from the beginning of the treatment and early spinal cord block (at 36 Gy) was peformed. And bilateral posterior necks were treated with electron after 36 Gy. After 54 Gy, non-coplanar beams were used for cone-down plan. We intercompared dose statistics (Dmax, Dmin, Dmean, D95, DO5, V95, VOS, Volume receiving 46 Gy) and dose volume histograms (DVH) of tumor and normal tissues and NTCP values of parotid glands for the above three plans. Results : For all patients, the new technique (plan-C) was comparable or superior to the other plans in target volume isodose distribution and dose statistics and it has more homogenous target volume coverage. The new technique was most superior to the other plans in parotid glands sparing (volume receiving 46 Gy: 100, 98, 69$\%$ for each plan-A, B and C). And it showed the lowest NTCP value of parotid glands in all patients (range of NTCP; 96$\~$100$\%$, 79$\~$99$\%$, 51$\~$72$\%$ for each plan-A, B and C). Conclusion : We conclude that the new technique employing 3-D conformal radiotherapy at the beginning of radiotherapy and cone down using non-coplanar beams with early spinal cord block is highly recommended to spare parotid glands for node-negative nasopharygeal cancer patients.

  • PDF

Study of Coherent High-Power Electromagnetic Wave Generation Based on Cherenkov Radiation Using Plasma Wakefield Accelerator with Relativistic Electron Beam in Vacuum (진공 내 상대론적인 영역의 전자빔을 이용한 플라즈마 항적장 가속기 기반 체렌코프 방사를 통한 결맞는 고출력 전자파 발생 기술 연구)

  • Min, Sun-Hong;Kwon, Ohjoon;Sattorov, Matlabjon;Baek, In-Keun;Kim, Seontae;Hong, Dongpyo;Jang, Jungmin;Bhattacharya, Ranajoy;Cho, Ilsung;Kim, Byungsu;Park, Chawon;Jung, Wongyun;Park, Seunghyuk;Park, Gun-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.6
    • /
    • pp.407-410
    • /
    • 2018
  • As the operating frequency of an electromagnetic wave increases, the maximum output and wavelength of the wave decreases, so that the size of the circuit cannot be reduced. As a result, the fabrication of a circuit with high power (of the order of or greater than kW range) and terahertz wave frequency band is limited, due to the problem of circuit size, to the order of ${\mu}m$ to mm. In order to overcome these limitations, we propose a source design technique for 0.1 THz~0.3 GW level with cylindrical shape (diameter ~2.4 cm). Modeling and computational simulations were performed to optimize the design of the high-power electromagnetic sources based on Cherenkov radiation generation technology using the principle of plasma wakefield acceleration with ponderomotive force and artificial dielectrics. An effective design guideline has been proposed to facilitate the fabrication of high-power terahertz wave vacuum devices of large diameter that are less restricted in circuit size through objective verification.

EFFECT OF CHLORHEXIDINE ON MICROTENSILE BOND STRENGTH OF DENTIN BONDING SYSTEMS (Chlorhexidine 처리가 상아질 접착제의 미세인장결합강도에 미치는 영향)

  • Oh, Eun-Hwa;Choi, Kyoung-Kyu;Kim, Jong-Ryul;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.2
    • /
    • pp.148-161
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of chlorhexidine (CHX) on microtensile bond strength (${\mu}TBS$) of dentin bonding systems. Dentin collagenolytic and gelatinolytic activities can be suppressed by protease inhibitors, indicating that MMPs (Matrix metalloproteinases) inhibition could be beneficial in the preservation of hybrid layers. Chlorhexidine (CHX) is known as an inhibitor of MMPs activity in vitro. The experiment was proceeded as follows: At first, flat occlusal surfaces were prepared on mid-coronal dentin of extracted third molars. GI (Glass Ionomer) group was treated with dentin conditioner, and then, applied with 2 % CHX. Both SM (Scotchbond Multipurpose) and SB (Single Bond) group were applied with CHX after acid-etched with 37% phosphoric acid. TS (Clearfil Tri-S) group was applied with CHX, and then, with adhesives. Hybrid composite Z-250 and resin-modified glass ionomer Fuji-II LC was built up on experimental dentin surfaces. Half of them were subjected to 10,000 thermocycle, while the others were tested immediately. With the resulting data, statistically two-way ANOVA was performed to assess the ${\mu}TBS$ before and after thermo cycling and the effect of CHX. All statistical tests were carried out at the 95 % level of confidence. The failure mode of the testing samples was observed under a scanning electron microscopy (SEM). Within limited results, the results of this study were as follows; 1. In all experimental groups applied with 2 % chlorhexidine, the microtensile bond strength increased, and thermo cycling decreased the micro tensile bond strength (P > 0.05). 2. Compared to the thermocycling groups without chlorhexidine, those with both thermocycling and chlorhexidine showed higher microtensile bond strength, and there was significant difference especially in GI and TS groups. 3. SEM analysis of failure mode distribution revealed the adhesive failure at hybrid layer in most of the specimen. and the shift of the failure site from bottom to top of the hybrid layer with chlorhexidine groups. 2 % chlorhexidine application after acid-etching proved to preserve the durability of the hybrid layer and microtensile bond strength of dentin bonding systems.

Study on the Physical Properties of the Gamma Beam-Irradiated Teflon-FEP and PET Film (Teflon-FEP 와 PET Film 의 감마선 조사에 따른 물리적 특성에 관한 연구)

  • 김성훈;김영진;이명자;전하정;이병용
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.11-21
    • /
    • 1998
  • Circular metal electrodes were vacuum-deposited with chromium on the both sides of Teflon-FEP and PET film characteristic of electret and the physical properties of the two polymers were observed during an irradiation by gamma-ray from $\^$60/Co. With the onset of irradiation of output 25.0 cGy/min the induced current increased rapidly for 2 sec, reached a maximum, and subsequently decreased. A steady-state induced current was reached about in 60 second. The dielectric constant and conductivity of Teflon-FEP were changed from 2.15 to 18.0 and from l${\times}$l0$\^$-17/ to 1.57${\times}$10$\^$-13/ $\Omega$-$\^$-1/cm$\^$-1/, respectively. For PET the dielectric constant was changed from 3 to 18.3 and the conductivity from 10$\^$-17/ to 1.65${\times}$10$\^$-13/ $\Omega$-$\^$-1/cm$\^$-1/. The increase of the radiation-induced steady state current I$\^$c/, permittivity $\varepsilon$ and conductivity $\sigma$ with output(4.0 cGy/min, 8.5 cGy/min, 15.6 cGy/min, 19.3 cGy/min) was observed. A series of independent measurements were also performed to evaluate reproducibility and revealed less than 1% deviation in a day and 3% deviation in a long term. Charge and current showed the dependence on the interval between measurements, the smaller the interval was, the bigger the difference between initial reading and next reading was. At least in 20 minutes of next reading reached an initial value. It may indicate that the polymers were exhibiting an electret state for a while. These results can be explained by the internal polarization associated with the production of electron-hole pairs by secondary electrons, the change of conductivity and the equilibrium due to recombination etc. Heating to the sample made the reading value increase in a short time, it may be interpreted that the internal polarization was released due to heating and it contributed the number of charge carriers to increase when the samples was again irradiated. The linearity and reproducibility of the samples with the applied voltage and absorbed dose and a large amount of charge measured per unit volume compared with the other chambers give the feasibility of a radiation detector and make it possible to reduce the volume of a detector.

  • PDF

Effects of Postoperative Radiation Therapy for Prevention of Keloids and Hypertrophic Scars (켈로이드와 비후성 반혼에서 재발을 방지하기 위한 수술후 방사선치료의 효과)

  • Kang, Ki-Mun;Choi, Ihl-Bohng;Kim, In-Ah;Jang, Jee-Young;Shinn, Kyung-Sub
    • Radiation Oncology Journal
    • /
    • v.15 no.3
    • /
    • pp.269-276
    • /
    • 1997
  • Purpose : To evaluate the effects of surgical excision followed by radiation therapy for Prevention of keloids and hypertrophic scars. Materials and Methods : From October 1987 to April 1995, radiation therapy was applied to 167 sites in 106 patients with surgical excision in an attempt to prevention of recurrence against keloids and hypertrophic scars. The main etiology of the keloids and hypertrophic scars were surgery in $49.2\%,\;trauma\;in\;25.0\%,\;ear-piercing\;in\;5.4\%,\;and\;burn\;in\;5.4\%$, The Patients' ages ranged from 3 to 70 years with a median of 32 years. Radiation therapy used ranged from 6 to 8MeV electron beam. Radiation therapy was delivered within 24 hours of surgical excision. Several dose schedules were used, varing from 400cGy in 1 daily fraction to 1900cGy in 4 daily fractions. The average total dose was 1059cGy, and the average dose per fraction was 433cGy. All patients were followed up from 24 to 114 months with a median follow up of 49 months. Results : The overall recurrence rate was $12.6\%$ (21/167) The overall 1-year and 2-year recurrence rates were $10.2\%\;and\;11.4\%$, respectively Among 21 recurrent sites, seventeen sites $(81\%)$ were confirmed within 12 months after surgical excision. Period to recurrence ranged from 1 month to 47 months with a median recurrence time of 9.6 months, The history of previous therapy was only a significant factor in recurrence. Twenty-four patients had history of previous therapy recurrence rates was significantly higher in this group than those without history of Previous therapy $(22.6\%\;vs.\;11.0\%,\;p=0.04)$. There was no serious complication related to radiation therapy. Conclusion : This study suggests that surgical excision followed by radiation therapy is an effective method of preventing keloids and hypertrophic scars.

  • PDF

핵융합로용 플라즈마 대향부품 개발을 위해 제작된 텅스텐/FM강 HIP 접합 목업의 수명 평가 해석

  • Lee, Dong-Won;Sin, Gyu-In;Kim, Seok-Gwon;Jin, Hyeong-Gon;Lee, Eo-Hwak;Yun, Jae-Seong;Mun, Se-Yeon;Hong, Bong-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.452-452
    • /
    • 2014
  • 블랑켓 일차벽이나 디버터와 같은 핵융합로 플라즈마 대향부품은 플라즈마로부터 입사되는 중성자 및 입자들을 차폐하여 구조물을 보호하고, 발생열을 에너지로 변환하기 위해 냉각재를 활용한 열제거 기능을 담당한다. 특히, 고속중성자와 입사 열부하 및 여러 입자들로부터 블랑켓 및 내부 구조물을 보호하기 위해 차폐체와 구조물로 구성된다. 세계적으로 차폐체로서는 텅스텐 혹은 텅스텐 합금, 구조물용 재료로는 저방사화 Ferritic Martensitic (FM) 강이 유력한 후보재료로 개발, 연구 중에 있다. 국내에서는 국제핵융합로(ITER) 사업을 통해 고온등방가압(HIP, Hot Isostatic Pressing)을 이용한 이종금속간 접합기술과 한국형 저방사화 고온구조재료인 ARAA (Advanced Reduced Activation Alloy)가 개발되고 있으며, 이를 활용한 설계, 접합법 개발, 제작목업의 건전성 평가 등이 수행되고 있다. 한국원자력연구원에서는 핵융합 기초사업의 일환으로 전북대와 공동으로 수행 중인 건전성 평가체계 개발을 위해, 기 개발된 접합법을 활용한 $45mm(H){\times}45mm(W){\times}2mm(T)$의 W/FM강 목업을 제작한 바 있으며, 이를 국내 구축된 고열부하 시험 장비인 KoHLT-EB (Electron Beam)를 활용한 고열부하 인가 건전성 평가시험을 준비 중에 있다. 이종금속간 접합 특성은 기계적 평가를 위한 파괴시험을 통해 검증, 이를 활용한 목업이 제작되었으며, 제작된 목업에 대한 초음파를 이용한 접합면의 비파괴 검사를 통해 결함이 없음을 확인하였다. 최종적으로 실제 사용되는 핵융합 운전조건과 유사 혹은 가혹한 조건에서 고열부하를 인가하여, 그 건전성을 평가가 이루어질 것이다. 고열부하 시험을 위해서는 냉각조건, 인가 열부하, 수명평가를 통한 반복 고열부하 인가 횟수 등이 사전에 결정되어야 한다. 이를 위해 상업용 열수력, 구조해석 코드인 ANSYS-CFX와 -mechanical을 이용한 시험조건 모의 및 수명 평가가 수행되었다. 구축 장비의 냉각계통을 고려하여 냉각수의 온도 및 속도는 $25^{\circ}C$, 0.15 kg/sec로, 열부하는 0.5 및 $1.0MW/m^2$에 대해 모의를 수행하였다. 정상상태 시 텅스텐의 최대 온도는 각 열부하 조건에 따라 $285.3^{\circ}C$$546.8^{\circ}C$였으며, 이에 도달하는 시간을 구하기 위해 천이해석을 수행하였고, 이를 통해 30초에 최대온도 95 %이상의 정상상태 온도에 도달함을 확인하였다. 또한, 목업의 초기 온도에 도달하는 냉각시간도 동일한 천이해석을 통해 30초로 가능함을 확인하였고, 최종 시험 조건을 30초 가열, 30초 냉각으로 결정하였다. 결정된 반복 열부하 인가 조건에서 이종금속 접합체가 받는 다른 열팽창 정도에 따른 응력을 계산하여 목업의 수명을 도출하였고, 이를 시험해야 할 반복 횟수로 결정하였다. 각 열부하 조건에 따른 온도조건을 ANSYS-mechanical 코드를 활용하여 열팽창과 이에 따른 접합면의 응력분포로 계산하였다. 0.5 및 $1.0MW/m^2$에 대해, 목업이 받는 최대 응력은 334.3 MPa와 588.0 MPa 였으며, 이 때 텅스텐과 FM강이 받는 strain을 도출하여 물성치로 알려진 cycle to failure 값을 도출하였다. 열부하에서 예상되는 수명은 0.5 및 $1.0MW/m^2$에 대해, 100,000 사이클 이상과 2,655 사이클로 계산되었으며, 시간적 제약을 고려 최종 평가는 $1.0MW/m^2$에 대해, 3,000사이클 정도의 실험을 통해 그 수명까지 접합건전성이 유지되는 지 실험을 통해 평가할 예정이다.

  • PDF

Trend in Research and Application of Hard Carbon-based Thin Films (탄소계 경질 박막의 연구 및 산업 적용 동향)

  • Lee, Gyeong-Hwang;Park, Jong-Won;Yang, Ji-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF