• 제목/요약/키워드: electromechanical coupling factor kp

검색결과 82건 처리시간 0.014초

Strain characteristics and electrical properties of [Li0.055(K0.5Na0.5)0.945](Nb1-xTax)O3 ceramics

  • Lee, Jong-Kyu;Cho, Jeng-Ho;Kim, Byung-Ik;Kim, Eung Soo
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc2호
    • /
    • pp.341-345
    • /
    • 2012
  • [Li0.055(K0.5Na0.5)0.945](Nb1-xTax)O3 (0.05 ≤ x ≤ 0.25) ceramics were prepared by the partial sol-gel (PSG) method to improve the microstructure homogeneity of Ta5+ ion and were compared to those prepared by the conventional mixed oxide (CMO) method. For the PSG method, Ta(OC2H5)5 was directly reacted with calcined [Li0.055(K0.5Na0.5)0.945]NbO3 powders and the specimens sintered at 1100 ℃ for 5 hrs showed a single phase with a perovskite structure. Compared to the specimens prepared by conventional mixed oxide powders, the relative ratio of tetragonal phase to orthorhombic phase of the sintered specimens prepared by Ta(OC2H5)5 was larger than that of the sintered specimens prepared by Ta2O5. The electromechanical coupling factor (kp), piezoelectric constant (d33) and dielectric constant (εr) of the sintered specimens were increased with Ta5+ content. These results could be attributed to the decrease of the orthorhombic-tetragonal polymorphic phase transition temperature (To-t), which could be evaluated by oxygen octahedral distortion. Strain of the sintered specimens prepared by the PSG method was higher than that of specimens prepared by the CMO method due to the increase of relative density. The effects of crystal structure on the strain characteristics of the specimens were also discussed.

Step-down Piezoelectric Transformer Using PZT PMNS Ceramics

  • Lim Kee-Joe;Park Seong-Hee;Kwon Oh-Deok;Kang Seong-Hwa
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제5C권3호
    • /
    • pp.102-110
    • /
    • 2005
  • Piezoelectric transformers(PT) are expected to be small, thin and highly efficient, and which are attractive as a transformer with high power density for step down voltage. For these reasons, we have attempted to develop a step-down PT for the miniaturized adaptor. We propose a PT, operating in thickness extensional vibration mode for step-down voltage. This PT consists of a multi-layered construction in the thickness direction. In order to develop the step-down PT of 10 W class and turn ratio of 0.1 with high efficiency and miniaturization, the piezoelectric ceramics and PT designs are estimated with a variety of characteristics. The basic composition of piezoelectric ceramics consists of ternary yPb(Zr$_{x}$Ti$_{1-x}$)O$_{3}$-(1-y)Pb(Mn$_{1/3}$Nb1$_{1/3}$Sb$_{1/3}$)O$_{3}$. In the piezoelectric characteristics evaluations, at y=0.95 and x=0.505, the electromechanical coupling factor(K$_{p}$) is 58$\%$, piezoelectric strain constant(d$_{33}$) is 270 pC/N, mechanical quality factor(Qr$_{m}$) is 1520, permittivity($\varepsilon$/ 0) is 1500, and Curie temperature is 350 $^{\circ}C$. At y = 0.90 and x = 0.500, kp is 56$\%$, d33 is 250 pC/N, Q$_{m}$ is 1820, $\varepsilon$$_{33}$$^{T}$/$\varepsilon$$_{0}$ is 1120, and Curie temperature is 290 $^{\circ}C$. It shows the excellent properties at morphotropic phase boundary regions. PZT-PMNS ceramic may be available for high power piezoelectric devices such as PTs. The design of step-down PTs for adaptor proposes a multi-layer structure to overcome some structural defects of conventional PTs. In order to design PTs and analyze their performances, the finite element analysis and equivalent circuit analysis method are applied. The maximum peak of gain G as a first mode for thickness extensional vibration occurs near 0.85 MHz at load resistance of 10 .The peak of second mode at 1.7 MHz is 0.12 and the efficiency is 92$\%$.