• 제목/요약/키워드: electromagnetic-force

검색결과 651건 처리시간 0.038초

자기시스템의 전자력 밀도 해석 (Electromagnetic Force Density Analysis of Magnetic System)

  • 이세희;최명준;김창욱;박일한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 A
    • /
    • pp.201-203
    • /
    • 1997
  • As electromagnetic systems have the complexity and high performance, they should be designed to take into account the vibration, noise and strain of mechanical aspect as well as electrical problems. Until now, mechanical approaches have been tried to analyze the subject, but it is difficult to figure out the matter in mechanical consideration. Because they are mainly related to electromagnetic phenomena. This paper deals with the theories and numerical formulations of magnetic force density. Several methods are applied to an actuator and DC machine model to calculate magnetic force density. These results are compared with the total force obtained by maxwell stress tensor and virtual work principle.

  • PDF

The Analysis of Liquid Metal Flow Characteristics in the Annular Passage of an Electromagnetic Pump

  • Kim, Chang-Eob;Jeon, Mun-Ho;Kwon, Jeong-Tae;Lim, Hyo-Jae;Lee, Suk-Won
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권2호
    • /
    • pp.270-275
    • /
    • 2010
  • An electromagnetic pump using a tubular induction motor (TLIM) has been proposed to pump liquid metal fluids. TLIM has been designed for liquid metal flow systems with a motor with a thrust force of 40~77[N]. The flow characteristics have been investigated by solving the Navier-Stokes equation, where the Lorentz force was included simply by considering it as a constant in the Navier-Stokes equation. A wood metal was chosen to simulate the liquid metal. The effect of Lorentz force on the flow rate was investigated. An experiment was conducted and its results were compared with those of the simulation. The simulation result showed an overestimation of about 17% compared with the experimental one.

Shading Coil의 최적 회로정수 결정에 관한 연구 (A Study on the Determination of Optimal Circuit Constants of Shading Coil)

  • 김시화
    • 한국항해학회지
    • /
    • 제9권1호
    • /
    • pp.95-109
    • /
    • 1985
  • It has been generally known that the chattering of an AC electromagnetic contactor due to the fluctuation of attracting force is the primary cause of its abrasion and noise. To reduce this chattering effect, an AC electromagnetic contactor is mostly fitted with a shading coil which works the role to make difference in phases of two distinct components of attracting force. The theoretical interpretation of an AC electromagnetic contactor with shading coil and the equation of its attracting force per unit wattage consumed have already been proposed, however, few explications so far have been made on the determination of optimal circuit constants of shading coil. In this paper, the auther constructs a circuit model of an AC electromagnetic contactor with shading coil which is based on the theoretical interpretation of shading coil examined to be valid by experiments under some assumptions, and defines the equation of attracting force without chattering per unit wattage consumed as a performance function for determining the optimal circuit constants of shading coil. And then, the optimal circuit constants maximizing the performance function are determined by means of computer simulation founded on the above circuit model and the characteristics of those circuit constants are examined with special attention to the coupling coefficient.

  • PDF

케이블 삼상단락 실증시험을 통한 전자력 대책방안 검토 (The Study on Countermeasures of Electromagnetic Force by Three Phase Short-Circuit Test of Cable)

  • 홍동석;김해준;박성민;장우석;박흥석;장태인;강지원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.363_364
    • /
    • 2009
  • Even though underground transmission cable is an essential transmission method to supply stable power for downtown and population center, interaction of electromagnetic force from fault current is very large comparing to overhead transmission line due to restricted installation space such as tunnel, etc. and close consideration is required for it. This paper presents countermeasures to reduce and release the effect of electromagnetic force with rope binding and installation of spacer and describes its efficacy through three phase short-circuit test, which will be utilized as basic materials for improvement and development of cleat, hanger, etc. to reduce and release effect of electromagnetic force in the future.

  • PDF

Separation of micro-plastics from sea water using electromagnetic archimedes force

  • N. Nomura;F. Mishima;S. Nishijima
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권3호
    • /
    • pp.18-21
    • /
    • 2023
  • Pollution of the environment by micro-plastics is now a worldwide problem. Plastics are difficult to decompose and put a great load on the marine environment. Especially a plastic with a size of 5 mm or less is defined as micro-plastic and are carried by ocean currents over long distances, causing global pollution. These are not easily decomposed in the natural environment. In this paper, we aimed to experimentally demonstrate that micro-plastics in seawater can be continuously separated by electromagnetic Archimedes force. Using polyethylene particles of 3 mm in diameter as the separation target, a flow channel was fabricated and separation conditions were investigated by particle trajectory calculations for separation experiments. Based on the calculation results, a solenoid-type superconducting magnet was used as a source of magnetic field to conduct separation experiments of micro-plastics in seawater. Although a high separation rate was assumed in the simulation results, the experimental results did not show any significant improvement in the separation rate due to the electromagnetic Archimedes force. It was found that the gas generated by the electrolytic reaction may have inhibited the migration of the particles.

전자기식 충격흡수구조의 설계를 위한 동특성 해석 및 실험 (Analytical and Experimental Studies on the design of Electromagnetic Shock Absorber)

  • 이미선;배재성;황재혁;임재혁
    • 항공우주시스템공학회지
    • /
    • 제6권1호
    • /
    • pp.26-32
    • /
    • 2012
  • A shock absorber with magnetic effects is suggested for a lunar space-ship expected to launch in 2025. The device consists of a copper steel combined tube, two magnets, and a piston. The piston is designed to move a magnet through the tube when it is pushed by an external impact. While the magnet is moving in the tube, it generates the eddy current force with the copper part of the tube and it also makes the large friction force with the steel part of the tube. Beside, it gets resistive forces against its movement such as the magnetic force with a steel-ring at the first time of the movement and the repulsive force with a same pole opposed magnet at the end time of the movement. In this thesis, results of analyses and experiments of each force are represented and the expected performance of the electromagnetic shock absorber is drawn from the results.

Novel Design and Research for a High-retaining-force, Bi-directional, Electromagnetic Valve Actuator with Double-layer Permanent Magnets

  • You, Jiaxin;Zhang, Kun;Zhu, Zhengwei;Liang, Huimin
    • Journal of Magnetics
    • /
    • 제21권1호
    • /
    • pp.65-71
    • /
    • 2016
  • To increase the retaining force, a novel design for a concentric, bi-directional, electromagnetic valve actuator that contains double-layer permanent magnets is presented in this paper. To analyze the retaining-force change caused by the magnets, an equivalent magnetic circuit (EMC) model is established, while the EMC circuit of a double-layer permanent-magnet valve actuator (DLMVA) is also designed. Based on a 3D finite element method (FEM), the calculation model is built for the optimization of the key DLMVA parameters, and the valve-actuator optimization results are adopted for the improvement of the DLMVA design. A prototype actuator is manufactured, and the corresponding test results show that the actuator satisfies the requirements of a high retaining force under a volume limitation; furthermore, the design of the permanent magnets in the DLMVA allow for the attainment of both a high initial output force and a retaining force of more than 100 N.