• Title/Summary/Keyword: electromagnetic shielding efficiency

Search Result 44, Processing Time 0.022 seconds

Graphene field-effect transistor for radio-frequency applications : review

  • Moon, Jeong-Sun
    • Carbon letters
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2012
  • Currently, graphene is a topic of very active research in fields from science to potential applications. For various radio-frequency (RF) circuit applications including low-noise amplifiers, the unique ambipolar nature of graphene field-effect transistors can be utilized for high-performance frequency multipliers, mixers and high-speed radiometers. Potential integration of graphene on Silicon substrates with complementary metal-oxide-semiconductor compatibility would also benefit future RF systems. The future success of the RF circuit applications depends on vertical and lateral scaling of graphene metal-oxide-semiconductor field-effect transistors to minimize parasitics and improve gate modulation efficiency in the channel. In this paper, we highlight recent progress in graphene materials, devices, and circuits for RF applications. For passive RF applications, we show its transparent electromagnetic shielding in Ku-band and transparent antenna, where its success depends on quality of materials. We also attempt to discuss future applications and challenges of graphene.

Characteristics of Shield Materials for Wireless Power Transfer

  • Chu, In Chang;Jeong, Jinseong
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.291-294
    • /
    • 2014
  • In this paper, we examine the electrical and magnetic properties of three different types of shield materials used for wireless power transfer systems: namely, FeSiAl-composite, NiZn-ferrite, and FeSi-amorphous types. The power transfer efficiency and resistance of an RX coil are measured, while varying the shield thickness. For all three types, a thicker shield provides better power transfer efficiency. Analysis of the measurements shows that the FeSiAl-composite type is suitable for systems with size limitation. In terms of magnetic properties, the FeSi-amorphous type shows the best features, and is suited to high power applications. This work can be used as a guideline to select suitable shielding material in various wireless power transfer systems.

The Effect of Crystallization by Heat Treatment on Electromagnetic Interference Shielding Efficiency of Carbon Fibers (열처리 온도에 의한 구조 결정성이 탄소섬유의 전자파 차폐 성능에 미치는 영향)

  • Kim, Jong Gu;Chung, Choul Ho;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.138-143
    • /
    • 2011
  • To investigate the electromagnetic interference shielding efficiency (EMI SE) property based on heat treatment effects of carbon fibers in various temperatures, the polyacrilonitrle-based carbon fibers were prepared by electrospinning method and treated at 1073, 1323, 1873 and 2573 K. The surface morphology of carbon fibers was investigated by using FE-SEM and the carbon crystallization was studied by Raman spectroscopy based on effects of reaction temperatures. The electrical conductivity was obtained by measuring the surface resistance with four probe method on carbon crystallization. The permittivity, permeability and EMI SE were investigated by using S-parameter in the range of 800~4500 MHz. In case of carbon fibers treated at 2573 K, the improved carbon crystallization was confirmed by Raman spectrum and the enhanced electrical conductivity showing 54.7 S/cm was also observed. The permittivity was dramatically improved by factor of 4 based on effect of high reaction temperature. Eventually, the highly improved EMI SE value was obtained showing around 41.7 dB.

Reduction of Leakage Magnetic Fields in Low Frequency WPT System Using Soft Magnetic Materials (연자성체를 이용한 저주파 무선전력전송 시스템의 누설 자기장 저감)

  • Lee, In-Gon;Kim, Nam;Cho, In-Kui;Hong, Ic-Pyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.76-79
    • /
    • 2017
  • This paper presents the electromagnetic shielding structure for low frequency wireless power transfer system with magnetic induction method using soft magnetic materials. Soft magnetic materials have advantages such as high permeability and low magnetic loss, but have undesirable effect of power loss by eddy current. To overcome this, we proposed the patterned soft magnetic material to suppress the eddy current path. For validity of this paper, we simulated the coil transfer efficiency and the radiated electromagnetic field, and fabricated the proposed structure using 79-permalloy. The measured results shows good agreements with the simulated results and reduction of the radiated electromagnetic field compared to commercial ferrite plate.

Evaluation of physical properties of Zn-Al metal coating according to arc metal spray surface treatment method (아크 금속 용사 표면 처리 방법에 따른 Zn-Al 금속 용사 피막의 물리적 특성 평가)

  • Jang, Jong-Min;Kim, Yeung-Kwan;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.89-90
    • /
    • 2022
  • Arc metal spraying is a widely used method for improving the performance of construction structures such as corrosion resistance and electromagnetic wave shielding. However, when arc metal spraying is applied to a concrete structure, adhesion performance may deteriorate. Therefore, the effect of each surface treatment method on the physical properties between the arc metal spray coating and concrete was reviewed by evaluating the deposition efficiency and adhesion performance according to the arc metal spray surface treatment method (surface reinforcing agent, roughening agent, and sealing agent). As a result, it is suggested as an optimal surface treatment condition to induce non-interface failure by using a roughening agent and to improve the properties of concrete and metal coatings by applying a surface reinforcing agent and sealing agent.

  • PDF

Effect of Oxyfluorination on Electroless Ni Deposition of Carbon Nanotubes (CNTs) and Their EMI Shielding Properties (탄소나노튜브의 무전해 니켈도금 및 전자파 차폐 특성에 미치는 함산소불소화의 영향)

  • Choi, Ye Ji;Lee, Kyeong Min;Yun, Kug Jin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.212-218
    • /
    • 2019
  • To investigate the effect of the oxyfluorination of carbon nanotubes (OF-CNTs) on electroless Ni deposition and electromagnetic interference shielding efficiency (EMI SE), CNTs were treated with a mixture of oxygen and fluorine gases and sequentially deposited with nickel. These samples were then manufactured into thin films on a polyimide film to evaluate their EMI SE. The surface chemical property of OF-CNTs was investigated by X-ray photoelectron spectroscopy. From the results of thermogravimetric and scanning electron microscopic analyses, it was found that both the amount of deposited Ni and the surface morphology changed depending on oxyfluorination. Moreover, the Ni-deposited CNTs pretreated with $O_2:F_2=1:9vol%$ exhibited the maximum EMI SE as approximately 19.4 dB at 1 GHz. These results were attributed to the formation of oxygen and fluorine functional groups on the surface of CNTs due to the oxyfluorination, and the functional groups enabled to deposit a suitable amount of Ni and improve the dispersion in the deposited solution.

Fabrication and Characteristics of Shielding Effects for the Complex Conductive Filler (복합 전도성 필러의 제작과 전자파 차폐 특성)

  • Park, Ju-Tae;Park, Jae-Sung;Do, Young-Soo
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.122-127
    • /
    • 2006
  • A series of conductive filler were prepared with electroless plating method. Base conductive materials of the filler were nickel and copper. The cores were prepared with Nylon 6 and rayon in different aspect ratio. Also, various complexes were made with ABS resin and conductive filler with different filler feed ratio. The conductivity of the filler was measured with conductivity analyzer and the size distributions of fillers was measured with laser particle size analyzer. Electromagnetic wave shielding efficiency of each complex film was measured with flange circular coaxial transmission line sample holder within the 1MHz$\sim$1GHz bandwidth range. From this study, the conductivity of filers surpass that of other carbon films. It is available that the filler made of fibrous materials can be applied in plastic molding industry of electric appliances as a EMI filler.

High Efficiency Active Phased Array Antenna Based on Substrate Integrated Waveguide (기판집적 도파관(SIW)을 기반으로 하는 고효율 능동 위상 배열안테나)

  • Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.227-247
    • /
    • 2015
  • An X-band $8{\times}16$ dual-polarized active phased array antenna system has been implemented based on the substrate integrated waveguide(SIW) technology having low propagation loss, complete EM shielding, and high power handling characteristics. Compared with the microstrip case, 1 dB less is the measured insertion loss(0.65 dB) of the 16-way SIW power distribution network and doubled(3 dB improved) is the measured radiation efficiency(73 %) of the SIW sub-array($1{\times}16$) antenna element. These significant improvements of the power division loss and the radiation efficiency using the SIW, save more than 30 % of the total power consumption, in the active phased array antenna systems, through substantial reduction of the maximum output power(P1 dB) of the high power amplifiers. Using the X-band $8{\times}16$ dual-polarized active phased array antenna system fabricated by the SIW technology, the main radiation beam has been steered by 0, 5, 9, and 18 degrees in the accuracy of 2 degree maximum deviation by simply generating the theoretical control vectors. Performing thermal cycle and vacuum tests, we have found that the SIW array antenna system be eligible for the space environment qualification. We expect that the high efficiency SIW array antenna system be very effective for high performance radar systems, massive MIMO for 5G mobile systems, and various millimeter-wave systems(60 GHz WPAN, 77 GHz automotive radars, high speed digital transmission systems).

Effects of Morphology on the Electrical and Mechanical Properties of the Polycarbonate/Multi-Walled Carbon Nanotube Composites

  • Kum Chong-Ku;Sung Yu-Taek;Han Mi-Sun;Lee Heon-Sang;Lee Sun-Jeong;Joo Jin-Soo;Kim Woo-Nyon
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.456-460
    • /
    • 2006
  • The electrical, morphological, and mechanical properties of poly carbonate (PC)/multi-walled carbon nan-otube (MWNT) composites were studied by electrical conductivity, electromagnetic interference shielding efficiency (EMI SE), scanning electron microscopy, and tensile strength measurements. In the electrical property analysis of the PC/MWNT composites, the percolation threshold of the PC/MWNT composites was observed between 1.5 and 2.5 wt% MWNT content. From the electrical conductivity and EMI SE studies, the theoretical values of the EMI SE were in good agreement with the experimental values of the EMI SE. From the morphology of the PC/MWNT composites, it was observed that MWNT is dispersed homogenously in the PC matrix. From the electrical conductivity and morphological studies, it was suggested that the percolation threshold of the PC/MWNT composites is related with the morphological results in that MWNT is apparently interconnected to form an electrical pathway. The mechanical properties of the PC/MWNT composites peaked at the MWNT content of 2.5 wt%.

A Preparation and Characteristics of Functional rchitecture Materials Made frm Non-metallic Minerals (비금속광물 분체의 기능성 건축소재화 특성)

  • 김병곤;최상근;박종력;전호석
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.811-817
    • /
    • 2003
  • Recently, application fields of non-metallic minerals by utilizing their structure properties are broadening. Especially, layered minerals have not only excellent shielding or covering ability but also absorbing and storing characteristics of chemical elements between a layers. We considered about the above mentioned characteristics and added functional substances onto their surfaces for the preparation of new environmentally friendly functional materials. In this study, natural graphite and sericite were mainly used to produce for the new environmentally friendly functional building materials. Graphite surfaces were modified with a surfactant (Alkyl Benzyle Demethyle Ammonium Chloride) for anti-bacillus and penicillium. Surface modification mechanism are that primary adsorption by differential zeta potential between graphite and ABDM and secondary adsorption by interaction between surfactant chains take place. Surfactant layers were fully formed and it was expected up to 99.7% up the efficiency of anti-bacillus and penicillium. Also the prepared functional samples have a effect to improve a various efficiency such as electromagnetic wave shield(up to 95%), deodorization(up to 80%), heat storage(5%) etc.