• Title/Summary/Keyword: electromagnetic shielding efficiency

Search Result 44, Processing Time 0.023 seconds

EMP shielding of mortar mixed with SiC and graphite

  • Oh-Seong Park;Hyeong-Kyu Cho
    • Journal of Ceramic Processing Research
    • /
    • v.23 no.2
    • /
    • pp.165-170
    • /
    • 2022
  • Using electromagnetic shielding technology, the exterior walls of buildings can prevent the penetration of electromagnetic waves. This effectively reduces the electromagnetic field intensity and electromagnetic pulse inside buildings. Therefore, in recent years, researchers have focused on developing electromagnetic shielding technology. In this study, we analyzed the physical properties and EMP shielding efficiency of shielding materials, such as silicon carbide (SiC), obtained as a byproduct of the semiconductor manufacturing processes, and graphite mixed with mortar, used in the external walls. The shielding materials underwent pretreatment, such as grinding, before mixing them with mortar. Because shielding materials are expensive, the shielding efficiency was calculated by mixing the respective shielding materials with mortar in only the outermost 10% of the sample mortar volume. Moreover, we calculated the shielding efficiency of the different samples of mortar with shielding materials throughout the volume of the samples using shielding effectiveness (SE) estimation formula. The predicted SE values of the samples of mortar mixed with granular SiC, graphite powder, and SiC powder were 20 dB, 18 dB, and 28 dB, respectively. The SE of the sample of mortar mixed with SiC powder is approximately equal to 30 dB, that is, the maximum shielding efficiency (99.9%).

Electrical Conductivity and Electromagnetic Interference Shielding Characteristics of Polyaniline Films with Adding Material (첨가물질에 따른 폴리아닐린 필름의 전기전도도 및 전자기파 차폐특성)

  • 김재욱
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 1998
  • Polyaniline free standing films are prepared by various processing. The properties of these films such as electrical conductivity and electromagnetic shielding efficiency are investigated. The conductivities of films doped with a camphorsulfonic acid and a silver are found to be 170/cm and 190S/cm, respectively, indicating metallic behavior. The films added silver, which are casted from hydrochloric acid and dodecylbenzensulfonic acid, show that the electromagnetic shielding efficiency are obtained 42∼52dB and 46∼56dB in the frequency range of 10MHz∼1GHz, respectively. This suggests that the films added silver, which is casted from dodecylbenzensulfonic acid, can be used as electromagnetic shielding material.

  • PDF

Electromagnetic Wave Shield Characteristics of Thermal Sprayed Ferrite Coatings (자성 페라이트 용사피막의 전자파 차폐 특성)

  • 정태식;김태형;박경채
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • In these days, many advanced nations have enforced import restrictions against things emitting electromagnetic wave which has report that it is so harmful. In general, electromagnetic wave is composed of electric wave and magnetic wave. The reflection of electromagnetic wave is mainly reflected by conductive materials and the magnetism loss is generated by magnetic ferrite. The magnetism loss of ferrite is separated by eddy current loss, residual magnetism loss and hysteresis loss. Thermal sprayed coating is intended to manufacture because of simple processes and high efficient electromagnetic wave shielding. The high efficient thermal sprayed coatings were made from the magnetic ferrite materials that characterizes absorption of electromagnetic wave, and the electric conductive materials that characterize emitting of electromagnetic wave. This study was manufactured thermal sprayed coatings to improve absorption-efficiency, and measured the electromagnetic wave shielding efficiency. As the experimental results, high electromagnetic wave shield efficiency was obtained at wave frequency 2GHz to thermal sprayed ferrite coatings manufactured by size distribution range of spray powders, $38~88\mu\textrm{m}$.

Characteristic of Electromagnetic Wave Shielding Coatings by Thermal Spray (용사에 의한 페라이트 자성재료 코팅의 .전자파 차폐특성)

  • 정태식;박경채
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.240-242
    • /
    • 2000
  • This study was investigated absorption properties of electromagnetic wave in thermal sprayed Sr-ferrite coatings. The experiment of this study was ; manufactured thermal spraying powder for improving absorption-efficiency, processed for increasing strength of thermal spray coatings, and measured the electromagnetic wave shielding efficiency. This study was obtained excellent absorption-efficiency by thermal sprayed Sr-ferrite coatings.

  • PDF

Electrical and Electromagnetic Shielding Properties of Polyaniline Films with Different Degrees of Crosslinking (교차결합의 변화에 따른 Polyaniline 필름의 전기적 성질과 전자기차폐 성질에 관한 연구)

  • 김재욱
    • Electrical & Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.54-60
    • /
    • 1997
  • The electrical and electromagnetic shielding properties have been investigated in polyaniline free standing films with different degrees of elongation cast from N-methyl 2-pyrrolidone(NMP) solution and camphorsulfonic acid(HCSA) doped polyaniline film. The degree of crystallinity of the crosslinked films increased with increasing the draw ratio. For the case of the oriented films doped with hydrochloric acid, we have the values of conductivities up to 173 S/cm. It is considered that the physical micro-crystalline crosslinking domains act as nucleation sites for the increase of relative crystallinity during stretching. We have obtained the value of conductivity 210 S/cm in the HCSA doped polyaniline film cast from the solvent of m-cresol, which is higher than that of the crosslinking oriented films. The electromagnetic shielding efficiency of HCSA doped polyaniline film obtained 37-41 dB in the frequency range of 10MHz-1GHlz, which is higher than that of the crosslinking oriented films. The higher value of electromagnetic shielding efficiency of HCSA doped polyaniline film suggests strong possibility of electromagnetic shielding material.

  • PDF

Electric Field Strength and Shielding Effectiveness Comparison According to the Size of Shielding Facility (방호 시설 크기에 따른 전계강도 및 차폐 효과 비교)

  • Kang, Ho-Jae;Huh, Chang-Su;Bang, Jeong-Ju;Choi, Jin-Su;Park, Woo-Chul
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.221-225
    • /
    • 2014
  • In modern times, threat of high power electromagnetic wave is increasing. When the electrical grid and communication network are attacked by these high power electromagnetic wave, the whole infrastructure is paralyzed. To protect the infrastructure from these high power electromagnetic wave threat, the shielding facility that can block high power electromagnetic wave is constructed. Also shielding effectiveness evaluation about the constructed facility is important. But, because of space efficiency and saving of construction cost to construct the actual shielding facility, the shielding room wall is generally adjacent to exterior concrete structures. As space between shielding facility wall and concrete structures is very small, arranging the transmitting antenna exterior shielding facility is realistically difficult. Therefore, in this research, The shielding effectiveness measurement plan in the state of exterior narrow space of HEMP shielding facility is presented. And to apply this plan, The influence of shielding effectiveness according to the size of the shielding facility is analyzed.

ELF Shielding Effectiveness of Ni Electrodeposited Steel Sheets (Ni도금강판의 극저주파 차폐 특성)

  • Kim, C.W.;Kim, B.M.;Suk, H.G.
    • Journal of Surface Science and Engineering
    • /
    • v.39 no.5
    • /
    • pp.210-214
    • /
    • 2006
  • In order to enhance the electromagnetic shielding efficiency of commercialized cold-rolled steel sheets, we have prepared Ni deposited steel sheets by the electrodeposition method. Surface alloying with Ni and Fe was achieved on a steel sheet by diffusion annealing process. Shielding effectiveness measurement results showed that annealed Ni electrodeposited steel sheets enhanced the shielding efficiency up to about 3 dB in the frequency range of 20 to 200Hz, compared with that of non-deposited steel sheets.

Electromagnetic Interference Shielding Efficiency Characteristics of Ammonia-treated Graphene Oxide (암모니아수 처리된 그래핀 옥사이드의 전자파 차폐효율 특성)

  • Park, Mi-Seon;Yun, Kug Jin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.613-618
    • /
    • 2014
  • In this study, nitrogen doped graphene oxide (GO) was prepared using liquid phase ammonia treatment to improve its electrical properties. Also, the aminated GO was manufactured into a film format and the electromagnetic interference (EMI) shielding efficiency was measured to evaluate its electrical properties. The XPS result showed that the increase of liquid phase ammonia treatment concentration led to the increased nitrogen functional group on the GO surface. The measurement of EMI shielding efficiency reveals that EMI shielding efficiency of the liquid phase ammonia treated GO was better than that of non-treated GO. When GO was treated using the ammonia solution of 21% concentration, the EMI shielding efficiency increased by -5 dB at higher than 2950 MHz. These results were maybe due to the fact that nitrogen functional groups on GO help to improve the absorbance of electromagnetic waves via facile electron transfer.

A Comparative Study of the Shielding Performance of Uniforms using Electromagnetic Wave Shielding Materials Currently on the Market for Workers at Korea Railroad Corporation (전자파 고노출 직업군의 근무환경 조사 및 시판 전자기파 차폐소재를 이용한 철도 근무복의 차폐성능 연구)

  • Jung, Hee-Jung;Choi, Hei-Sun;Kim, Eun-Kyong
    • Journal of the Korean Society of Costume
    • /
    • v.60 no.6
    • /
    • pp.23-36
    • /
    • 2010
  • This study set out to develop clothes made of electromagnetic wave shielding materials. Among the various worker groups exposed to electromagnetic waves for long hours, railroad workers were chosen for the study. After selecting the locations they worked, the investigator measured electromagnetic wave on the field. To examine the effects of electromagnetic wave shielding materials, I applied a lining made of electromagnetic wave shielding materials to the existing work clothes. The first experimental clothes had the silver fabric for the lining in the current working clothes, the second experimental clothes had the copper- and nickel-plate polyester placed between the outer and the lining to prevent the corrosive material from contacting the skin, and the third experimental clothes had the silver fabric for the lining and the copper- and nickel-plate polyester between the outer and the lining. The results indicate that even if a fabric is evaluated to shield electromagnetic waves after tests, it cannot completely shield electromagnetic waves emitting from everyday appliances of 60Hz. Therefore, there should be ongoing development and research efforts on fabrics that can shield electromagnetic waves to a certain degree in order to develop working clothes to alleviate fatigue for those who are constantly exposed to electromagnetic waves, relieve their anxiety, offer them psychological stability and thus help them increase job efficiency.

Research Trends in Electromagnetic Shielding using MXene-based Composite Materials

  • Siyeon Kim;Jongmin Byun
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.57-76
    • /
    • 2024
  • Recent advancements in electronic devices and wireless communication technologies, particularly the rise of 5G, have raised concerns about the escalating electromagnetic pollution and its potential adverse impacts on human health and electronics. As a result, the demand for effective electromagnetic interference (EMI) shielding materials has grown significantly. Traditional materials face limitations in providing optimal solutions owing to inadequacy and low performance due to small thickness. MXene-based composite materials have emerged as promising candidates in this context owing to their exceptional electrical properties, high conductivity, and superior EMI shielding efficiency across a broad frequency range. This review examines the recent developments and advantages of MXene-based composite materials in EMI shielding applications, emphasizing their potential to address the challenges posed by electromagnetic pollution and to foster advancements in modern electronics systems and vital technologies.