• Title/Summary/Keyword: electromagnetic launch

Search Result 37, Processing Time 0.022 seconds

A CONCEPTUAL DESIGN FOR ELECTRICAL GROUNDING ARCHITECTURE OF KOREAN SPACE LAUNCH VEHICLE

  • Kim Kwang-Soo;Lee Soo-Jin;Ma Keun-Soo;Shin Myoung-Ho;Hwang Seung-Hyun;Ji Ki-Man;Chung Eui-Seung
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.231-234
    • /
    • 2004
  • Electrical grounding is defined as referencing an electrical circuit or a common reference plane for preventing shock hazards and for enhancing operability of the circuit and EMI control. In order to realize the best electrical grounding system of korean space launch vehicle, we should design the electrical grounding architecture of korean space launch vehicle of system-level at the earliest point in design procedure. To minimize the electrical grounding loop and the unnecessary electromagnetic interference or radiation among the electronic subsystems, we should establish the electrical grounding rules of the all electrical interfaces. The electrical interfaces among the electronic subsystems are generally classified into the electrical power and signal interfaces. Because of using the primary and secondary power system architecture in the korean space launch vehicle system such as the common space launch vehicle systems, we need to establish the electrical grounding rules between the primary and secondary power system. We also need to establish the electrical signal grounding interface rules among the electronic subsystems. In this paper, we will describe the grounding schemes of the common space launch vehicle system and propose a conceptual design for the electrical grounding architecture of korean space launch vehicle system.

  • PDF

COMS LV Interface Analysis Considering RF Compatibility (고주파 호환성을 고려한 통신해양기상위성 발사체 접속 해석)

  • Lee, Hohyung;Chae, Taebyeong;Oh, Seunghyeop
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.3
    • /
    • pp.1-6
    • /
    • 2007
  • The COMS(Communication, Ocean & Meteorological Satellite)is the geostationary satellite which will be performing three main objectives such as meteorological service, ocean monitoring and Ka-band satellite communications. This paper presents the analysis of the electromagnetic radiated compatibility between COMS satellite and the ARIANE 5 launch vehicle. As a conclusion, a good level of confidence can be given at present time to demonstrate the compatibility between the spacecraft and the launcher, and vice versa. No threat has been identified regarding the other units powered during launch mode.

  • PDF

Analysis of Acceleration Characteristics of a Railgun (레일건 가속특성 분석)

  • Lee, Young-Hyun;Kim, Seong-Ho;Lee, Byung-Ha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.511-518
    • /
    • 2021
  • To accelerate a launch mass with a low level of pressure as possible in a railgun, it is required to hold supplied current nearly constant during launch phase. We obtained the discharging conditions for required current shaping by modeling and analysis of circuit equations coupled to acceleration equation of the launch mass. The acceleration characteristics of the railgun in the conditions were analyzed by comparing experimental and theoretical results.

Optimal Parametric Design of Coil Gun to Improve Muzzle Velocity (피투사체 속도 향상을 위한 코일건의 기구 변수 최적 설계)

  • Lee, Su-Jeong;Lee, Ju Hee;Lee, Dong Yeon;Seo, TaeWon;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.408-412
    • /
    • 2014
  • An electromagnetic launching system presents a viable projectile propulsion alternative with low cost and minimal environmental drawbacks. A coil gun system propels a projectile using an electromagnetic force and the system is mainly employed in military weapon systems and space launch systems. In this paper, we perform optimization design to improve the muzzle velocity by analyzing the sensitivity. The muzzle velocity, which is the most important design function variable, is affected by design variables including the number of axial turns in the electromagnetic coil, number of radial turns in the electromagnetic coil, initial distance between the projectile and the coil, inner radius of the electromagnetic coil, and length of the projectile. An orthogonal arrays matrix is configured, and a finite element analysis is performed utilizing the commercial electromagnetic analysis software MAXWELL. The muzzle velocity of the optimal design is 62.4% greater than that of the initial design.

Compact S-Band Antenna Hat for RF Compatibility Testing of Launch Vehicle (발사체의 RF 호환성 시험을 위한 소형 S-밴드 안테나 햇)

  • Kim, Sung-Wan;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.148-157
    • /
    • 2015
  • In this paper, we propose a compact antenna hat to perform RF compatibility testing efficiently between the launch vehicle and ground stations. The proposed structure implements a small size and low loss using the conductive shield instead of the conventional RF absorber. The S-band antenna hat, which is fabricated for an inverted-F onboard antenna with the size of $74mm{\times}13mm{\times}16mm$, has the small enclosure of $88mm{\times}35mm{\times}44mm$, the return loss of 25.6 dB, the insertion loss of 0.26 dB, and the leakage loss of 49.4 dB at the center frequency of 2.25 GHz. The simulated and measured results show a good agreement.

A Novel-Type Velocity-controllable Electromagnetic Coil Launcher based on Voltage Control

  • Huang, Wenkai;Huan, Shi;Xiao, Ying
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2067-2073
    • /
    • 2018
  • This paper will present the design of a novel-type velocity-controllable electromagnetic coil launcher (EMCL). By studying the influence of initial capacitor voltage on the velocity of an EMCL, the launcher voltage can be set to precisely adjust the velocity of projectile launching. The simulation of voltage and velocity in relation to time is obtained by Maxwell software. The experimental data show that for the launch accuracy to be achievable, the actual precision is 2%. Because of the excellent performance of Velocity-controllable EMCL, it can replace the air gun and applied to split Hopkinson pressure bar (SHPB).

SPECTROSCOPIC STUDIES IN X-RAY ASTRONOMY (X-선 천문 분야의 분광관측 연구)

  • CHOI CHUL-SUNG
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.73-83
    • /
    • 2000
  • X-ray astronomy deals with measurements of the electromagnetic radiation in the energy range of $E\~0.1-100 keV (\lambda\~0.12-120{\AA})$. The wavelength of X-ray is comparable to the size of atoms, so that the photons in the X-ray range are usually produced and absorbed by the atomic processes. Since the launch of the first X-ray astronomy satellite 'Uhuru' in 1970, technological advances in a launch capability and a detection capability make X-ray astronomy one of the most rapidly evolving fields of astronomical research. Particularly, a spectral resolving power $E/{\Delta}E$ has been increased by an order of 2 - 3 (in the energy range of 0.1 - 10 keV) during the past 30years. In this paper, I briefly review a developing process of the resolving power and spectroscopic techniques. Then I describe important emission/absorption lines in X-ray astronomy, as well as diagnostics of gas property with line parameters.

  • PDF

Design of Large Multi-Electromagnetic Shaking System (대형 멀티 전자기 가진 시스템 설계)

  • Im, Jong-Min;Moon, Sang-Moo;Eun, Hee-Kwang;Choi, Seok-Weon;Choi, Joon-Min
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.76-81
    • /
    • 2008
  • The vibration test system of satellite environment test dept. has been used successfully for the vibration tests of a majority of korean space programs. To meet the recent needs of large size test facility available for the vibrational tests of the huge launch vehicles and satellites, KARI have developed the large size multi-electromagnetic shaking system with $3{\times}3m$ head expander system. The new system will consist of three electromagnetic shakers which has 160 kN thrust force individually, and be able to sustain up to 8 tons test load and 300 kNm overturing moment. This paper describes the design components in the development process of multi-excitation shaker system.

  • PDF

Analytical and Experimental Studies on the design of Electromagnetic Shock Absorber (전자기식 충격흡수구조의 설계를 위한 동특성 해석 및 실험)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk;Im, Jae-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.6 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • A shock absorber with magnetic effects is suggested for a lunar space-ship expected to launch in 2025. The device consists of a copper steel combined tube, two magnets, and a piston. The piston is designed to move a magnet through the tube when it is pushed by an external impact. While the magnet is moving in the tube, it generates the eddy current force with the copper part of the tube and it also makes the large friction force with the steel part of the tube. Beside, it gets resistive forces against its movement such as the magnetic force with a steel-ring at the first time of the movement and the repulsive force with a same pole opposed magnet at the end time of the movement. In this thesis, results of analyses and experiments of each force are represented and the expected performance of the electromagnetic shock absorber is drawn from the results.

Gyrocompass Correction and Pointing Accuracy Improvement of the Ship-Borne Mobile Down Range Antenna for Launcher Telemetry (우주발사체 텔레메트리용 해상 이동형 다운레인지 안테나의 자이로컴퍼스 보정과 포인팅 정확도 향상)

  • Lee, Sun-Ik;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.532-541
    • /
    • 2014
  • The ship-borne mobile down range telemetry antenna system having 4.6 m reflector antenna and 3-axis mounting structure at S-band requires the precise pointing accuracy at sea for the launch mission. Using the LEO satellites tracking, a method to determine and verify the antenna pointing and tracking performance, and to find the pointing bias which dominantly contributes to the pointing inaccuracy, is presented. Based upon the tests conducted on the Jeju sea and Pacific sea, the pointing bias is determined and its origin is also identified as the drift of the heading angle of the gyrocompass. The applied systematic correction taking into account the pointing bias, and the achieved improvement of the pointing accuracy are shown. Thanks to the correction, it is presented that this antenna tracked the launcher(KSLV-I) stably within the required pointing accuracy in the following KSLV-I third launch.