• Title/Summary/Keyword: electromagnetic field water treatment system

Search Result 2, Processing Time 0.015 seconds

Development of the Water Treatment System with High Performance Electromagnetic Field (고성능 전자장을 갖는 수처리 시스템의 개발)

  • Lee, Yong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.3
    • /
    • pp.155-159
    • /
    • 2005
  • This paper presents the water treatment system with high performance electromagnetic field for a good quality of water. The electromagnetic field water treater consists of a solion, a solion body, and a high voltage converter. The high voltage converter is controlled by PWM current controller. The high voltage converter of 13W is designed for an isolation operation amp, an isolation current detector, and an over current protector. Using the high voltage PWM converter, the system with the proposed electromagnetic field water treater can be controlled easily. Simulation and experimental results show the effectiveness of the system strategy proposed for the scale rejection.

Waveguide Applicator System for Head and Neck Hyperthermia Treatment

  • Fiser, Ondrej;Merunka, Ilja;Vrba, Jan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1744-1753
    • /
    • 2016
  • The main purpose of this article is a complex hyperthermia applicator system design for treatment of head and neck region. The applicator system is composed of four waveguides with a stripline horn aperture and circular water bolus. The specific absorption rate (SAR) and temperature distribution from this applicator in various numerical phantom models was investigated. For used targets, the treatment planning based on the optimization process made through the SEMCAD X software is added to show the steering possibilities of SAR and thereby temperature distribution. Using treatment planning software, we proved that the SAR and temperature distribution can be effectively controlled (by amplitude and phase changing) improving the SAR and temperature target coverage approximately by 20 %. For the proposed applicator system analysis and quantitative evaluation of two parameters 25 % iso-SAR and $41^{\circ}C$ iso-temperature contours in the treatment area with the respect to sensitive structures in treatment area were defined. To verify our simulation results, the real measurement of reflectivity coefficient as well as the temperature distribution in a homogenous phantom were performed.