• Title/Summary/Keyword: electromagnetic (EM) field

Search Result 101, Processing Time 0.022 seconds

Perturbations of Zonal and Tesseral Harmonics on Frozen Orbits of Charged Satellites

  • Fawzy Ahmed Abd El-Salam;Walid Ali Rahoma;Magdy Ibrahim El-Saftawy;Ahmed Mostafa;Elamira Hend Khattab
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.87-106
    • /
    • 2024
  • The objective of this research is to address the issue of frozen orbits in charged satellites by incorporating geopotential zonal harmonics up to J6 and the initial tesseral harmonics. The employed model starts from the first normalized Hamiltonian to calculate specific sets of long-term frozen orbits for charged satellites. To explore the frozen orbits acquired, a MATHEMATICA CODE is developed. The investigation encompasses extensive variations in orbit altitudes by employing the orbital inclination and argument of periapsis as freezing parameters. The determined ranges ensuring frozen orbits are derived from the generated figures. Three-dimensional presentations illustrating the freezing inclination in relation to eccentricity, argument of periapsis, and semi-major axis parameters are presented. Additional three-dimensional representations of the phase space for the eccentricity vector and its projection onto the nonsingular plane are examined. In all investigated scenarios, the impacts of electromagnetic (EM) field perturbations on the freezing parameters of a charged satellite are demonstrated.

Capacitively Loaded Loop Antenna Fed with Metamaterial Balun (Metamaterial 발룬으로 급전된 Capacitively Loaded 루프 안테나)

  • Jung, Youn-Kwon;Lee, Bom-Son
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.10
    • /
    • pp.1084-1090
    • /
    • 2009
  • This paper presents a balun consisting of a T-junction, a Right/Left Handed Transmission line(RLH-TL), and a conventional Right Handed(RH) line. It is assumed that the RLH-TL consists of N unit-cells. We provide closed-form solutions and design a very compact wideband(80 %) balun using CPW lines based on the obtained solutions. Then, we propose a capacitively loaded loop antenna designed for a uniform current distribution. The antenna resistance of the proposed antenna at resonance is about 204 ohms. The length of the unit cell is about $\lambda/12$(total length: $1\;\lambda$). The magnetic field generated from the proposed antenna is stronger than that of the conventional one by as much as 20 dB. We used a coplanar strip line(CPS) to combine the loop antenna and balun. The proposed antenna may be used as a near field UHF RFID reader antenna.

Research on An Equivalent Antenna Model for Induced Human Body Current by RFID Reader Antenna of HF Band (단파(HF) 대역 RFID 리더 안테나에 의한 인체 유도 전류의 등가 안테나 모형 연구)

  • Lee, Jong-Gun;Byun, Jin-Kyu;Choi, Hyung-Do;Cheon, Chang-Yul;Lee, Byung-Je;Chung, Young-Seek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.6
    • /
    • pp.503-508
    • /
    • 2009
  • There are many researches on human effect by electromagnetic equipments and applications. However, most of research and guidelines for limiting human exposure to electromagnetic fields are established by mobile communication of SAR(Specific Absorption Ratio). Therefore we need to study different effects on human body when exposed to high frequency(HF) band equipments, such as human induced current etc. In this paper, we measured human induced current by RFID reader antenna of HF band in the near field and we propose human equivalent antenna which has orthogonal loops to each other. Then, we compared the induced currents on proposed equivalent antenna with human.

The Operating Characteristic Analysis of PM-type MAGNETIC CONTACTOR (영구자석형 전자접촉기의 동작특성 해석)

  • Cho, Hyun-Kil;Lee, Eun-Woong;Kim, Gil-Su;Kim, Il-Jung;Kim, Sung-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.792-794
    • /
    • 2000
  • This paper describes the design and the analysis of electromagnetic system of Magnetic Switch using 2D parametric finite element method(EM-Pulse). Magnetic Switch is electrical equipment, which is widely used for switching on/off motors in industrial field. The transient state is simulated in order to calculate the response time of Magnetic Switch. The simulation is based upon a step-by-step integration of the electric circuit equations and the core movement. The contactor uses a permanent magnet for maintaining the closed state. The presented solution takes account of non-linear magnetic material property and spring force controlled by core position. The dynamic response of Magnetic Switch predicted by the simulation agrees closely with the required condition.

  • PDF

Numerical Experiments using Efficient FMM for the EM Scattering by Underground Object (지하물체 탐지를 위한 FMM 기반의 효율적인 수치 해석 연구)

  • Kim, Sung-Hwan;Ahn, Chang-Hoi
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1790-1795
    • /
    • 2009
  • For GPR(Ground Penetrating Radar) applications, an accurate analysis of the scattered field is necessary to identify the unknown target. Dyadic Green's function of the multilayered medium is developed and applied to analysis of the underground conducting object. We used method of moment(MOM) with dyadic Green's function, and Discrete Complex Image Method(DCIM). To reduce the computational complexity, fast multipole method is introduced and we showed the accuracy of the method comparing with the conventional method of moment. For investigating the underground conducting target, several numerical experiments were accomplished using this method.

2.5 Dimensional EM Modeling considering Horizontal Magnetic Dipole Source (수평 자기쌍극자 송신원을 이용한 2.5차원 전자탐사 모델링)

  • Kwon Hyoung-Seok;Song Yoonho;Son Jeong-Sul;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.2
    • /
    • pp.84-92
    • /
    • 2002
  • In this study, the new modeling scheme has been developed for recently designed and tested electromagnetic survey, which adapts horizontal magnetic dipole with $1\;kHz\~1\;MHz$ frequency range as a source. The 2.5-D secondary field formulation in wavenumber domain was constructed using finite element method and verified through comparing results with layered-earth solutions calculated by integral equations. 2-D conductive- and resistive-block models were constructed for calculating electric field, magnetic field and impedance - the ratio of electric and magnetic fields which are orthogonal each other. This study showed that electric field and impedance are superior in identifying 2-D isolated-body model to magnetic field. In particular, impedance gives more stable results than electric field with similar spatial resolving power, because electric field is divided by magnetic field in impedance. Thus the impedance analysis which uses electric and magnetic fields together would give better result in imaging the shallow anomalies than conventional EM method.

Source Identification in 2-Dimensional Scattering Field Based on Inverse Problem (역문제를 이용한 2차원 산란장에서의 소스 추정)

  • Kim, Tae Yong;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1262-1268
    • /
    • 2014
  • Inverse problem is very interest in the sciences and engineering, in particular for modeling and monitoring applications. By applying inverse problem, it can be widely used to exploration of mineral resources, identification of underground cables and buried pipelines, and diagnostic imaging in medical area. In this paper, we firstly consider 2-dimensional EM scattering problem and present the FDTD method to estimate unknown source. In this case, non-linear CGM technique is used to investigate unknown sources corresponding to measured data obtained from forward problem in near field. The proposed technique for solving the inverse source problem presents a reasonable agreement and can be applied to investigate an internal source signal of embedded security module.

Improvement of a 4-Channel Spiral-Loop RF Coil Array for TMJ MR Imaging at 7T (7T 악관절 MRI를 위한 4 채널 스파이럴 RF 코일의 성능개선)

  • Kim, Kyoung-Nam;Kim, Young-Bo;Cho, Zang-Hee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.2
    • /
    • pp.103-114
    • /
    • 2012
  • Purpose : In an attempt to further improve the radiofrequency (RF) magnetic ($B_1$) field strength in temporomandibular joint (TMJ) imaging, a 4-channel spiral-loop coil array with RF circuitry was designed and compared with a 4-channel single-loop coil array in terms of $B_1$ field, RF transmit (${B_1}^+$), signal-to-noise ratio (SNR), and applicability to TMJ imaging in 7T MRI. Materials and Methods: The single- and 4-channel spiral-loop coil arrays were constructed based on the electromagnetic (EM) simulation for the investigation of $B_1$ field. To evaluate the computer simulation results, the $B_1$ field and ${B_1}^+$ maps were measured in 7T. Results: In the EM simulation result and MRI study at 7T, the 4-channel spiral-loop coil array found a superior $B_1$ performance and a higher ${B_1}^+$ profile inside the human head as well as a slightly better SNR than the 4-channel single-loop coil array. Conclusion: Although $B_1$ fields are produced under the influence of the dielectric properties of the subject rather than the coil configuration alone at 7T, each RF coil exhibited not only special but also specific characteristics that could make it suited for specific application such as TMJ imaging.

Efficient crosswell EM tomography for monitoring geological sequestration of $CO_2$

  • Lee, Ki-Ha;Kim, Hee-Joon;Song, Yoon-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.321-327
    • /
    • 2003
  • [ $CO_2$ ] sequestration in oil reservoirs can be one of the most effective strategies for long-term removal of greenhouse gas from atmosphere. This paper presents an advantage of the localized nonlinear approximation of integral equation solutions for inverting crosswell electromagnetic data, which are observed as a part of pilot project of $CO_2$ flooding at the Lost Hills oil field in central California, U.S.A. To monitor the migration of $CO_2$, we have used 2-D cylindrically symmetric and 2.5-D tomographic inversion methods. These two schemes produce nearly the same images if the borehole separation is large compared with the skin depth. However, since the borehole separation is much less than five skin depths in this $CO_2$ injection experiment, the 2.5-D model seems to be more reliable than the 2-D model. In fact, the pre-injection 2.5-D image is more successfully compared with induction logs observed in the two wells than the 2-D model. From the time-lapse crosswell imaging, we can confirm the replacement of brine with $CO_2$ makes a decrease of conductivity.

  • PDF

The medium-band observation of the neutrino source, TXS 0506+056

  • Hwang, Sungyong;Im, Myungshin;Taak, Yoonchan;Paek, Insu;Choi, Changsu;Shin, Suhyun;Ji, Tae-Geun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.73.4-73.4
    • /
    • 2019
  • The TXS0506+056 is a blazar and counterpart of the neutrino event IceCube-170922A. It is the first time that the neutrino event and flaring event in electromagnetic wave (EM) coincided. We observed TXS0506+056 with medium-bands in optical using 0.25m and 2.1m telescope at McDonald observatory about a month after the neutrino event. We tracked the variability of SED of the target for three weeks, and our observation showed no abrupt variability in optical range during this period. We concluded that a month after the neutrino event, the TXS0506+056 became less active and shows no feature of the energetic event. We also concluded that the medium-bands are well suited for tracking SEDs of objects. Our result demonstrates the potential of the wide-field 0.25m telescope (5.5 deg^2) for finding transient objects and track the variability of sources like AGNs.

  • PDF