• Title/Summary/Keyword: electrolyte concentration

Search Result 687, Processing Time 0.027 seconds

Effect of Complexing/Buffering Agents on Morphological Properties of CuInSe2 Layers Prepared by Single-Bath Electrodeposition

  • Lee, Hana;Lee, Wonjoo;Seo, Kyungwon;Lee, Doh-Kwon;Kim, Honggon
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.44-51
    • /
    • 2013
  • For preparing a device-quality $CuInSe_2$ (CISe) light-absorbing layer by single-bath electrodeposition for a superstrate-type CISe cell, morphological properties of the CISe layers were investigated by varying concentrations of sulfamic acid and potassium biphthalate, complexing/buffering agents. CISe films were grown on an $In_2Se_3$ film by applying a constant voltage of -0.5V versus Ag/AgCl for 90 min in a solution with precursors of $CuCl_2$, $InCl_3$, and $SeO_2$, and a KCl electrolyte. A dense and smooth layer of CISe could be obtained with a solution containing both sulfamic acid and potassium biphthalate in a narrow concentration range of combination. A CISe layer prepared on the $In_2Se_3$ film with proper concentrations of complexing/buffering agents exhibited thickness of $1.6{\sim}1.8{\mu}m$ with few undesirable secondary phases. On the other hand, when the bath solution did not contain either sulfamic acid or potassium biphthalate, a CISe film appeared to contain undesirable flake-shape $Cu_{2-x}Se$ phases or sparse pores in the upper part of film.

Electrochemical Characterization of Stainless Steel in Ethanolamine Solution Containing an Alkyl Group using Cyclic Voltammetry (순환전압전류법에 의한 알킬기를 함유한 에탄올아민용액에서 스테인리스의 전기화학적 특성)

  • Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.66-73
    • /
    • 2014
  • In this work, the current-voltage curves for stainless steel in the ethanolamine solution containing alkyl group were measured using the conventional three electrodes of cyclic voltammetry. Stainless steel as working electrode, Ag/AgCl electrode as reference electrode and Pt wire as counter electrode were used respectively. As a result, the C-V characteristics of stainless steel were to be for an irreversible process due to the oxidation current from cyclic voltammogram, using N-ethylethanolamine and N,N-dimethylethanolamine solutions. Effective diffusivity of corrosion inhibitors was decreased with increasing concentration. It was found from SEM images of the metal that the electrolyte (specific name ?)(0.5 N) as corrosion inhibitor was added into a N, N-diethylethanolamine solution ($1.0{\times}10^{-3}M$) containing copper and nickel, the corrosion inhibiting effect was enhanced.

Studies on Determination of Titanium from Ilmenite by Polarographic Method (Polarography 에 依한 Titanium 의 定量에 關한 硏究)

  • Kim, Hwang-Am;Kim, Chan-Kuk
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.10-13
    • /
    • 1962
  • Titanium in solution of EDTA (Ethylenediaminetetraacetic acid) yield well-defined, reversible polarographic waves. In this report, a polarographic method for rapid determination of titanium in the Korean ilmenite was proposed, This polarographic method is based on the measurement of polarogram in the supporting electrolyte of EDTA. As the pH is increased the wave become more irreversible the diffusion current are diminished, and the half wave potential become more negative. In spite of the complication arising from numerous titanium species, in 0.2 M of EDTA, pH 6.3, the titanium waves are reproducible and analytically useful. In this medium titanium ion give well-defined reduction wave, and the half wave potential were -0.61V vs S.C.E. at pH 6.3. At the same time, the wave had a linear relationship between the concentration of titanium ion and the wave height. The Korean ilmenites were analyzed by this method and satisfactory results were obtained.

  • PDF

In-situ magnetization measurements and ex-situ morphological analysis of electrodeposited cobalt onto chemical vapor deposition graphene/SiO2/Si

  • Franco, Vinicius C. De;Castro, Gustavo M.B.;Corredor, Jeaneth;Mendes, Daniel;Schmidt, Joao E.
    • Carbon letters
    • /
    • v.21
    • /
    • pp.16-22
    • /
    • 2017
  • Cobalt was electrodeposited onto chemical vapor deposition (CVD) graphene/Si/$SiO_2$ substrates, during different time intervals, using an electrolyte solution containing a low concentration of cobalt sulfate. The intention was to investigate the details of the deposition process (and the dissolution process) and the resulting magnetic properties of the Co deposits on graphene. During and after electrodeposition, in-situ magnetic measurements were performed using an (AGFM). These were followed by ex situ morphological analysis of the samples with ${\Delta}t_{DEP}$ 30 and 100 s by atomic force microscopy in the non-contact mode on pristine CVD graphene/$SiO_2$/Si. We demonstrate that it is possible to electrodeposit Co onto graphene, and that in-situ magnetic measurements can also help in understanding details of the deposition process itself. The results show that the Co deposits are ferromagnetic with decreasing coercivity ($H_C$) and demonstrate increasing magnetization on saturation ($M_{SAT}$) and electric signal proportional to remanence ($M_r$), as a function of the amount of the electrodeposited Co. It was also found that, after the end of the dissolution process, a certain amount of cobalt remains on the graphene in oxide form (this was confirmed by X-ray photoelectron spectroscopy), as suggested by the magnetic measurements. This oxide tends to exhibit a limited asymptotic amount when cycling through the deposition/dissolution process for increasing deposition times, possibly indicating that the oxidation process is similar to the graphene surface chemistry.

Degradation of Polymer Electrolyte Membrane under OCV/Low Humidity Conditions (OCV / 저가습 조건에서 고분자전해질 막 열화)

  • Kim, Taehee;Lee, Junghun;Lee, Ho;Lim, Tae Won;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.345-350
    • /
    • 2007
  • During PEMFC operation, OCV(open circuit voltage) and low humidity conditions accelerate the degradation of perfluorosulfonic acid membrane. There have been no studies that clearly explain why these conditions accelerate the membrane degradation. In this study, the hydrogen permeability through the membrane, I-V polarization of MEA, fluoride emission rate(FER) and $H_2O_2$ concentration in condensed water were measured during cell operation under OCV and low relative humidity(RH). The experimental results were evaluated with oxygen radical mechanism the most commonly known for membrane degradation. It seems that low RH of anode is a good condition for $H{\cdot}$ radical formation on the Pt catalyst and the OCV condition accelerate the $H{\cdot}$ to form $HO_2{\cdot}$ radical attacking the polymer membrane.

Preparation of Ag Nanoparticles by Templating Poly(vinyl chloride)-g-poly(styrene sulfonic acid) Graft Copolymer Membrane (Poly(vinyl chloride)-g-poly(styrene sulfonic acid) 가지형 공중합체막을 이용한 은 나노입자 제조)

  • Byun, Su-Jin;Seo, Jin-Ah;Chi, Won-Seok;Shul, Yong-Gun;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.39-45
    • /
    • 2011
  • An amphiphilic graft copolymer consisting of a poly(vinyl chloride) (PVC) backbone and poly(styrene sulfonic acid) (PSSA) side chains (PVC-g-PSSA) was synthesized via atom transfer radical polymerization (ATRP). This polymer electrolyte membrane was ion-exchanged to Ag ions by immersing in 10 wt% $AgNO_3$ aqueous solution and templated the growth of Ag nanoparticles by a reducing agent. The formation of Ag nanoparticles was confirmed using UV-visible spectroscopy and X-ray diffraction (XRD). Transmission electron microscopy (TEM) revealed that utilization of $NaBH_4$ was the most effective in the formation of Ag nanoparticles with 10~15 nm in size. The formation of Ag nanoparticles was also strongly affected by the concentration of reducing agent and reduction time.

Computer Simulation on the Poling Mechanism for the Control of 2nd Order Optical Nonlinearity in Silica Glass (2차 비선형 광특성의 제어를 위한 실리카 유리의 전기분극 기구 전산모사)

  • Yu, Ung-Hyeon;Lee, Seung-Gyu;Sin, Dong-Uk;Jeong, Yong-Jae
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.207-214
    • /
    • 2001
  • Silica glass is a core material for optical fiber in optical telecommunications, but its centrosymmetry eliminates the second order nonlinearity. But it is experimentally well known that the space charge polarization induces the Second Harmonic Generation (SHG) when a strong DC voltage is applied to silica glass for a long period of time with metal blocking electrodes. In this report, the results of a theoretical calculation of the nonlinear optical property caused by the space charge polarization, and a model of a numerical analysis to predict the small chance in nonlinear optical property as functions of time and space are provided. Assuming that amorphous silica is a solid state electrolyte and sodium ion is the only mobile charge carrier, 'Finite Difference Method' was employed for modeling of numerical analysis. The distributions of the concentration of sodium ion and electric field as functions of a normalized length of the specimen and a normalized applied voltage were simulated.

  • PDF

Numerical Study on Oxygen Depletion Characteristics of Porous Cathodes in Anode-Supported Solid Oxide Fuel Cells (음극지지 고체산화물 연료전지 다공성 양극에서의 산소고갈 특성에 관한 수치해석 연구)

  • Shin, Dongwoo;Nam, Jin Hyun;Kim, Charn-Jung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.4
    • /
    • pp.257-268
    • /
    • 2017
  • This paper proposes an efficient two-dimensional simulation model for solid oxide fuel cells (SOFCs) based on the electrochemical effectiveness model. The effectiveness model is known to accurately predict the current generation performance of SOFC electrodes, by considering the complex reaction/transport processes that occur within thin active functional layers near the electrolyte. After validation tests, the two-dimensional simulation model was used to calculate the distribution of current density and oxygen concentration transverse to the flow channel in anode-supported SOFCs, with which the oxygen depletion characteristics were investigated in detail. In addition, simulations were also conducted to determine the minimum number of grids required in the transverse direction to efficiently obtain accurate results.

Electroplating process for the chip component external electrode

  • Lee, Jun-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1-2
    • /
    • 2000
  • In chip plating, several parameters must be taken into consideration. Current density, solution concentration, pH, solution temperature, components volume, chip and media ratio, barrel geometrical shape were most likely found to have an effect to the process yields. The 3 types of barrels utilized in chip plating industry are the onventional rotating barrel, vibrational barrel(vibarrel), and the centrifugal type. Conventional rotating barrel is a close type and is commonly used. The components inside the barrel are circulated by the barrel's rotation at a horizontal axis. Process yield has known to have higher thickness deviation. The vibrational barrel is an open type which offers a wide exposure to electrolyte resulting to a stable thickness deviation. It rotates in a vertical axis coupled with multi-vibration action to facilitate mixed up and easy transportation of components. The centrifugal barrel has its plated work centrifugally compacted against the cathode ring for superior electrical contact with simultaneous rotary motion. This experiment has determined the effect of barrel vibration intensity to the plating thickness distribution. The procedures carried out in the experiment involved the overall plating process., cleaning, rinse, Nickel plating, Tin-Lead plating. Plating time was adjusted to meet the required specification. All other parameters were maintained constant. Two trials were performed to confirm the consistency of the result. The thickness data of the experiment conducted showed thatbthe average mean value obtained from higher vibrational intensity is nearer to the standard mean. The distribution curve shown has a narrower specification limits and it has a reduced variation around the target value. Generally, intensity control in vi-barrel facilitates mixed up and easy transportation of components. However, it is desirable to maintain an optimum vibration intensity to prevent solution intrusion into the chips' internal electrode. A cathodic reaction can occur in the interface of the external and internal electrode. 2H20 + e $\rightarrow$M/TEX> 20H + H2.. Hydrogen can penetrate into the body and create pressure which can cause cracks. At high intensity, the chip's motion becomes stronger, its contact between each other is delayed and so plating action is being controlled. However, the strong impact created by its collision can damage the external electrode's structure there by resulting to bad plating condition.

  • PDF

EFFECTS OF SURFACTANTS ON THE FENTON DEGRADATION OF PHENANTHRENE IN CONTAMINATED SEDIMENTS

  • Jee, Sang-Hyun;Ko, Seok-Oh;Jang, Hae-Nam
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.138-143
    • /
    • 2005
  • Laboratory batch experiments were conducted to evaluate the Fenton degradation rates of phenanthrene. Fenton reactions for the degradation of phenanthrene were carried out with aqueous and slurry phase, to investigate the effects of sorption of phenanthrene onto solid phase. Various types of surfactants and electrolyte solutions were used to evaluate the effects on the phenanthrene degradation rates by Fenton's reaction. A maximum 90% removal of phenanthrene was achieved in aqueous phase with 0.9% of $H_2O_2$ and 300 mg/L of $Fe^{2+}$ at pH 3. In aqueous phase reaction, inhibitory effects of synthetic surfactants on the removal of phenanthrene were observed, implying that surfactant molecules acted as strong scavenger of hydroxyl radicals. However, use of $carboxymethyl-{\beta}-cyclodextrin$ (CMCD), natural surfactant, showed a slight enhancement in the degradation of phenanthrene. It was considered that reactive radicals formed at ternary complex were located in close proximity to phenanthrene partitioned into CMCD cavities. It was also show that Fenton degradation of phenanthrene were greatly enhanced by addition of NaCl, indicating that potent radical ion ($OCI^-$) played an important role in the phenanthrene degradation, although chloride ion might be acted as scavenger of radicals at low concentrations. Phenanthrene in slurry phase was resistant to Fenton degradation. It might be due to the fact that free radicals were mostly reacting with dissolved species rather than with sorbed phenanthrene. Even though synthetic surfactants were added to increase the phenanthrene concentration in dissolved phase, low degradation efficiency was obtained because of the scavenging of radicals by surfactants molecules. However, use of CMCD in slurry phase, showed a slight enhancement in the phenanthrene degradation. As an alternative, use of Fenton reaction with CMCD could be considered to increase the degradation rates of phenanthrene desorbed from solid phase.