• Title/Summary/Keyword: electrolyte coating

Search Result 255, Processing Time 0.027 seconds

Surface Treatment of LiFePo4 Cathode Material for Lithium Secondary Battery

  • Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.4
    • /
    • pp.246-250
    • /
    • 2010
  • In this study, nano-crystallized $Al_2O_3$ was coated on the surface of $LiFePO_4$ powders via a novel dry coating method. The influence of coated $LiFePO_4$ upon electrochemical behavior was discussed. Surface morphology characterization was achieved by transmission electron microscopy (TEM), clearly showing nano-crystallized $Al_2O_3$ on $LiFePO_4$ surfaces. Furthermore, it revealed that the $Al_2O_3$-coated $LiFePO_4$ cathode exhibited a distinct surface morphology. It was also found that the $Al_2O_3$ coating reduces capacity fading especially at high charge/discharge rates. Results from the cyclic voltammogram measurements (2.5-4.2 V) showed a significant decrease in both interfacial resistance and cathode polarization. This behavior implies that $Al_2O_3$ can prevent structural change of $LiFePO_4$ or reaction with the electrolyte on cycling. In addition, the $Al_2O_3$ coated $LiFePO_4$ compound showed highly improved area-specific impedance (ASI), an important measure of battery performance. From the correlation between these characteristics of bare and coated $LiFePO_4$, the role of $Al_2O_3$ coating played on the electrochemical performance of $LiFePO_4$ was probed.

Thermal Degradation of Black Cobalt Solar Selective Coatings (흑색 코발트 태양 선택흡수막의 열퇴화)

  • Lee, Kil-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.4
    • /
    • pp.9-15
    • /
    • 2015
  • Black cobalt solar selective coatings were prepared by using an electroplating method. The changes in the optical properties of the black cobalt selective coating due to thermal degradation were analyzed by using the Auger electron spectroscopy (AES) and spectrophotometer. The black cobalt selective coating was prepared on a copper substrate by using a synthesized electrolyte with $CoCl_2$ and KSCN at a current density of ${\sim}0.5A/dm^2$ for 45s ~ 60s. Its optical properties were a solar absorptance (${\alpha}$) of the order of 0.80 ~ 0.84 and a thermal emittance (${\epsilon}$) of 0.01. From the AES depth profile analysis of heated sample, thermal degradation of the black cobalt selective coating heated for 33 hours at temperature of $350^{\circ}C$ occurred primarily due to interdiffusion at interface of cobalt and copper substrate. This results were predictable that the ${\alpha}$ decreases due to the thermal oxidation and diffusion.

Effect of Hydrophobizing Method on Corrosion Resistance of Magnesium Alloy with Plasma Electrolytic Oxidation (소수성 처리 방법에 따른 플라즈마 전해 산화 처리된 마그네슘 합금의 내식성)

  • Joo, Jaehoon;Kim, Donghyun;Jeong, Chanyoung;Lee, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.2
    • /
    • pp.96-102
    • /
    • 2019
  • Magnesium and its alloys are prone to be corroded, thus surface treatments improving corrosion resistance are always required for practical applications. As a surface treatment of magnesium alloys, plasma electrolytic oxidation (PEO), creating porous stable oxide layer by a high voltage discharge in electrolyte, enhances the corrosion resistance. However, due to superhydrophilicity of the porous oxide layer, which easily allow the penetration of corrosive media toward magnesium alloys substrate, post-treatments inhibiting the transfer of corrosive media in porous oxide layer are required. In this work, we employed a hydrophobizing method to enhance the corrosion resistance of PEO treated Mg alloy. Three types of hydrophobizing techniques were used for PEO layer. Thin Teflon coating with solvent evaporation, self-assembled monolayer (SAM) coating of octadecyltrichlorosilane (OTS) based on solution method and SAM coating of perfluorodecyltrichlorosilane (FDTS) based on vacuum method significantly enhances corrosion resistance of PEO treated Mg alloy with reducing the contact of water on the surface. In particular, the vacuum based FDTS coating on PEO layer shows the most effective hydrophobicity with the highest corrosion resistance.

The Effect of the Surface-modified Carbon Anode on the Electrochemical Performance in Li-ion Battery (리튬이온전지용 탄소 부극재료의 표면개질에 따른 충방전 특성)

  • 김정식;윤휘영
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.2
    • /
    • pp.25-29
    • /
    • 2001
  • This study examined the effects of carbon surface modification by the epoxy resin coating on the electrochemical performance. The mesocarbon microbeads(MCMB) carbon was surface-modified by coating the epoxy resin and its electrochemical properties as an anode was examined. The surface coating of MCMB was carried out by refluxing the MCMB powders in a dilute H2SO4 solution, and mixing them with the epoxy resin-dissolved tetrahydrofuran(THF) solution. Under heat-treatment of the coated MCMB at the temperature over $1000^{\circ}C$, the epoxy-resin coating layer was converted into amorphous phase which was identified by a high resolution transmission electron microscope (HRTEM). The epoxy resin coated MCMB has higher Brunauer-Emmett-Teller (BET) surface area, higher charge/ discharge capacity and better cycleability than a raw MCMB without coating. The reason for the enhancement of cell performance by the epoxy resin coating were considered as the epoxy resin coating layer plays an important role to be a barrier for carbon reacting with electrolyte and to retard the formation of passivation layer.

  • PDF

Cathodic Polarization of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ on $Ce_{0.8}Gd_{0.2}O_{1.9}$ Electrolyte ($Ce_{0.8}Gd_{0.2}O_{1.9}$ 전해질에서 $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ 양극의 과전압특성)

  • 윤희성;노의범;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.981-987
    • /
    • 1998
  • $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ as air electrode for soild oxide fuel cell was synthesized by a citrate process and its cathodic polarization was determinated by the current interruption method on the Gd-doped ceria as electrolyte. The addition of citric acid increased the exothermic heat for the formation of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ perovskite oxide. The degree of the initial particle agglomeration was affected by the exothermic heat. Also the increase of cal-cination temperature enlarged the particle size and the higher sintering temperature accelerated the den-sification of $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ layer after its being painted on $Ce_{0.8}Gd_{0.2}O_{1.9}$ electrolyte. In this study $La_{0.5}Sr_{0.5}MnO_{3-\delta}$ synthesized by citrate process of which the molar ratio of citric acid to metal nitrate was 2 calcined at $650^{\circ}C$ for 2hr and sintered at 1100 at $1200^{\circ}C$ for 4 hrs after slurry coating on Ce0.8Gd0.2O1.9 electrlyte showed the lowest cathodic polarization.

  • PDF

Performance Characteristics of Porous Plate Single Cell For PAFC (다공성 바이폴라 사용 단위전지 성능 특성)

  • Kim, Chang-Soo;Chun, Young-Gab;Song, Rak-Hyun;Choi, Byung-Woo;Shin, Dong-Ryul;Choi, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1707-1709
    • /
    • 1996
  • For the improvement of the performance and life time of phosphoric acid fuel cell, the management of electrolyte in the electrocatalyst layer and electrolyte matrix in the cell structure is very important. Porous bipolar pinto structure, that is known as an advanced type, is generally used for the storage of electrolyte in the cell. In this paper, the single cell was made of the electrode by coating directly electrocatalyst layer on porous bipolar plate. The single cell showed $186\;mA/cm^2$ at 0.6V. This performance is similar to the performance of the conventional nonporous plate single cell. The technology of porous plate single cell could be directly used to the fabrication of stack in order to improve the performance and life time of phosphoric acid fuel cell.

  • PDF

Improved Conversion Efficiency of Dye-sensitized Solar Cells Based on TiO2 Porous Layer Coated TiO2 Nanotubes on a Titanium Mesh Substrate as Photoanode

  • Lim, Jae-Min;He, Weizhen;Kim, Hyung-Kook;Hwang, Yoon-Hwae
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.90-96
    • /
    • 2013
  • We report here flexible dye-sensitized solar cells (DSSC) based on Ti-mesh electrodes that show good mechanical flexibility and electrical conductivity. $TiO_2$ nanotube arrays prepared by electrochemical anodizing Ti-mesh substrate were used as photoanode. A Pt-coated Ti-mesh substrate was used as counter electrode. The photoanodes were modified by coating a $TiO_2$ porous layer onto the $TiO_2$ nanotubes in order to increase the specific surface area. To increase the long term stability of the DSSCs, a gel type electrolyte was used instead of a conventional liquid type electrolyte. The DSSC based on $33.2{\mu}m$ long porous $TiO_2$ nanotubes exhibited a better energy conversion efficiency of ~2.33%, which was higher than that of the DSSCs based on non-porous $TiO_2$ nanotubes.

Physical Properties of Oxide Films Formed by Plasma Anodization on Mg Alloy

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Aoki, Kazuki;Nanao, Hidetaka;Kure-Chu, Song-Zhu
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.657-663
    • /
    • 2019
  • In this work, we study physical and mechanical properties of oxide films formed on AZ91D magnesium alloy by plasma anodization at different temperatures. It is found that the higher the electrolyte temperature, the lower is the breakdown voltage of oxide layer. This is probably because films formed at higher temperatures are thinner and denser. Moreover, electrolyte temperature plays an important role in the physical properties of the films. As the electrolyte temperature increases from 20 to $50^{\circ}C$, the hardness of the oxide layer increases. Friction test against steel balls indicates that wear scars become narrower for films formed at higher temperatures because the films are harder, as indicated by the Vickers hardness. The thinner and denser nature of the oxide film formed at $50^{\circ}C$ is also advantageous for heat transfer when film is used as a heat sink. Laser flash test results show very fast heat transfer for AZ91D with plasma anodized oxide layer formed at higher temperatures.

Analysis of Oxide Coatings Formed on Al1050 Alloy by Plasma Electrolytic Oxidation (Al1050 합금에 Plasma Electrolytic Oxidation으로 형성된 산화피막 분석)

  • Kim, Bae-Yeon;Lee, Deuk-Yong;Kim, Yong-Nam;Jeon, Min-Seok;You, Whan-Sik;Kim, Kwang-Youp
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.295-300
    • /
    • 2009
  • The crystal structure of surface coatings on Al1050 alloy by PEO (Plasma Electrolytic Oxidation), were investigated. The electrolyte for PEO was Na-Si-P system solution. The main crystalline phase were $\gamma$-alumina and $\alpha$-alumina. Crystallinity was increased with applied voltage and applied time. The dominant crystalline phase were affected not only chemical composition of Al alloy substrate and electrolyte, but also the +/- ratio of applied voltage.

Electrodeposition of Chromium from Chromiun(III) Sulfate Complexes in Aqueous Solutions (황산크롬(III) 착화합물 수용액으로부터의 크롬전착)

  • 고석수;송진태
    • Journal of the Korean institute of surface engineering
    • /
    • v.21 no.4
    • /
    • pp.149-159
    • /
    • 1988
  • Electrodeposition of chromium from low concentration chromjum (III) sulfate complexess in aqueous using sodium formate-glycine mixtures as a complexing agent was studied. In the bath formation, it is found that the optimum again temperature and time for equilibration of the electrolytes are nrcessary for 24 hrs at 45$^{\circ}C$and the optimum elecrical charge for low current electrolysis which might be produced Cr(II) ions in the electrolytes is necessary for minum 2Ah/$\ell$. The optmun concentration off standard electrolyte for main composition is 0.05M chromium(III) sulfate, 0.2M sodium formate-0.2M glycine, and I mMNaSCN as a catalysea, respectivwly. The standard electrolyte is shows good covering, good throwing power, and 6% of current efficiency (Cr(III)basis). The oppearance of electrodeposits shows att active bright chromium. The SEM morphology of the chromjum coating is observed as smooth surfaces and dispersed micro prcro pores. X-ray diffraction analysis shows a bcc structure which the perferred orintation of the chromium electrodeposits is strongin(200)plane.

  • PDF