• Title/Summary/Keyword: electrolyte as cathode glow discharge

Search Result 2, Processing Time 0.017 seconds

Fundamental study of electrolyte cathode atomic discharge for development of on-line monitoring system (On-line monitoring system 개발에 관한 음극 액상 글로우 방전의 기초 연구)

  • Kim, Kyung-Mi;Woo, Young-A;Cho, Won-Bo;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.496-501
    • /
    • 2002
  • The electrolyte cathode glow discharge (ELCAD) is a new optical system for direct determination of trace heavy metals in flowing water. ELCAD has been successfully developed for on-line monitoring of heavy metals in flowing water. The application of an atmospheric glow discharge between an electrolyte solution cathode and a platinum rod anode led to the development of stable discharge. The fundamental aspects of new plasma source have been investigated. The fundamental study of ELCAD system has been measured plasma temperature using Einstein-Boltzmann equation after searching Fe atomic emission lines. The spectrum of each elements such as Cu, Pb, Fe, Ni and Cr show only major elemental line and no ionic line possibly due to low temperature plasma source. The detection limits of each elements are also investigated. These informations show that this type of plasma may apply for monitoring of heavy metals in waste water which consists of complex matrix.

Fundamental Studies on the Development of On-line Monitoring of Trace Mercury in Drinking Water (음용수 중 수은 연속자동측정시스템의 개발에 관한 연구)

  • Chang, Soo-Hyun;Kim, Hyo-Jin;Kim, Sun-Tae;Kim, Young-Man
    • Analytical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.299-305
    • /
    • 1999
  • The electrolyte cathode atomic glow discharge (ELCAD) is a new plasma source for direct determination of trace heavy metals in drinking and waste water. ELCAD has been successfully developed for on-line monitoring of heavy metals, however, shows difficulty to measure mercury. In this study, ELCAD has been modified to apply the atomic absorption spectrometry (AAS) for the direct determination of trace elements of mercury in flowing water.The fundamental characteristics of this new types of plasma source have been investigated and found that the pH of the solution, discharge voltage, and current are most important factors.The absorbance of 1.0 ppm Hg standard solution increases as pH of the solution increases from pH 1.0 to 3.0.However, % RSD of the absorbance also increases as the pH of solution increasesdue to plasma unstability.The detection limits of the standard solution of pH 1.5 and pH 3.0 are about 40 ppb and 10 ppb level, respectively.

  • PDF