• Title/Summary/Keyword: electrokinetic phenomenon

Search Result 13, Processing Time 0.027 seconds

Electrokinetic remediation of diesel-contaminated silty sand under continuous and periodic voltage application

  • Asadollahfardi, Gholamreza;Rezaee, Milad
    • Environmental Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.456-462
    • /
    • 2019
  • Hydrocarbon contamination is among the most challenging problems in soil remediation. Electrokinetic method can be a promising method to remediate hydrocarbon-contaminated soils. Electrokinetic method consists of different transport phenomena including electro-migration, electrophoresis, and electroosmotic flow. Electroosmotic flow is the main transport phenomenon for hydrocarbon removal in soil porous media. However, the main component of hydrocarbons is the hydrophobic organic which indicates low water solubility; therefore, it makes the electroosmotic flow less effective. The objective of the present study is to enhance electrokinetic remediation of diesel-contaminated silty sand by increasing the solubility of the hydrocarbons in the soil and then increase the efficiency. For this purpose, sodium dodecyl sulfate (SDS) was used as a catholyte. In this content, SDS 0.05 M was used as catholyte and $Na_2SO_4$ 0.1 M was used as an anolyte. Low (1 V/cm) and high (2 V/cm) voltage gradients were used in periodic and continuous forms. The best removal efficiency was observed for high voltage gradient (2 V/cm) in a periodic form, which was 63.86. This result showed that a combination of periodic voltage application in addition to the employment of SDS is an effective method for hydrocarbon removal from low permeable sand.

Electrokinetic streaming potential detection in a triangular-shaped microchannel (역삼각형 모양을 갖는 마이크로 채널에서의 전기역학적 흐름전위 검출)

  • Jo, Seong-Sik;Park, Je-Kyun
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.115-119
    • /
    • 2007
  • We report electrokinetic streaming potential detection in a microchannel. Streaming potential, one of the representative electrokinetic phenomena, becomes noticeable either when the channel size reduces or when the concentration of electrolyte reduces. We suggest a triangular-shaped microchannel to enhance streaming potential. The triangular-shaped microchannel shows better performance than the straight one in terms of streaming potential. Couple of possible methods to enhance streaming potential is also discussed. Moreover, this type of channel and phenomenon can be applied to biological sensor application and energy transduction.

Study of Effectiveness of using higher voltages in analysis of dredged sediments and heavy metal concentration (고전압 이용한 준설퇴적토 유효성 및 중금속 변화에 관한 연구)

  • Kwon, Ki-Bum;Kim, Sang-Keun;Ramchanda, Prasad;Yu, Jun;Chung, Ha-Ik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1446-1451
    • /
    • 2008
  • The clay found in the river or in any waste water treatment plant usually have a very high content of water. A large amount of sediments hinder the navigation in river. In waste water treatment plant, there is requirement of settling the thick sludge. These problems are overcome by using rapid means of sedimentation and settling. This paper focus on how method of Electrokinetic sedimentation can be made faster. Sedimentation using Electrokinetic phenomenon has been discussed with varied voltage applied and effect and dose of coagulant in increasing the process. The experimental test has been carried out at water content that are generally present in the case of river and small canals carrying waste water. This paper also focus on different heavy metals concentration during the process and the power aspects of process. A series of experiment were done to support the proposed theory and how a bubble formation could hinder the purpose of experiment.

  • PDF

Visualization of Ion Transport and pH Change in Ion Concentration Polarization (농도 분극 현상에서의 이온의 흐름과 pH 변화의 가시화)

  • Ko, Sung-Hee;Kang, Kwan-Hyoung
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.38-42
    • /
    • 2010
  • Ion concentration polarization is an electrokinetic phenomenon which occurs in membrane systems, such as in an electrodialysis and fuel-cell system. But the phenomenon is not fully understood because hydrodynamics, electrokinetics and electrochemistry are coupled with each other. Here, we report that there occurs a change of pH value of buffer solution in concentration polarization phenomenon. To visualize the change of pH, the litmus solution which is one of the pH indicators was used. It is conjectured that the pH of solution changes because hydrogen ions were concentrated in cathodic side and hydroxide ions were concentrated in anodic side. We anticipate that this work may contribute to the fundamental understanding on the ion concentration polarization phenomenon.

Analysis of Preconcentration Dynamics inside Dead-end Microchannel (막다른 미세유로 내부의 농축 동역학 분석)

  • Hyomin Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.155-161
    • /
    • 2023
  • Ion concentration polarization (ICP) is one of the essential important mechanisms for biomolecule preconcentration devices as well as a fundamental transport phenomenon found in electrodialysis, electrochemical cell, etc. The ICP triggered by externally applied voltage enables the biomolecular analyte to be preconcentrated at an arbitrary position by a locally amplified electric field inside the microchannel. Conventional preconcentration methodologies using the ICP have two limitations: uncertain equilibrium position and hydrodynamic instability of preconcentration plug. In this work, a new preconcentration method in the dead-end microchannel around cation exchange membrane was numerically studied to resolve the limitations. As a result, the numerical model showed that the analyte was concentrated at a shock front developed in a geometrically confined dead-end channel. Furthermore, the electrokinetic behaviors for preconcentration dynamics were analyzed by changing microchannel's applied voltage and volumetric charge concentration of microchannel as key parameters to describe the dynamics. This work would provide an effective means for a point-of-care platform that requires ultra-fast preconcentration method.

Remediation of Electroplating Contaminated Soil by a Field Scale Electrokinetic System with Stainless Steel Electrodes

  • Yuan, Ching;Tsai, Chia-Ren;Hung, Chung-Hsuang
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.5
    • /
    • pp.26-34
    • /
    • 2014
  • A $1.5m(L){\times}1.0m(W){\times}1.1m(H)$ polypropylene (PP) field scale electroniketic system coupled with stainless steel electrodes was designed to examined metal removal performance applied 0.2-0.35 V/cm potential gradient and 0.05-0.5M lactic acid for 20 day. Electroosmosis permeabilities of $2.2{\times}10^{-5}cm^2/V-s$ to $4.8{\times}10^{-5}cm^2/V-s$ were observed and it increased with the potential gradient increased. The reservoir pH controlled at $7.0{\pm}1.0$ has been effectively diminished the clogging of most metal oxides. The best removal efficiency of Zn, Pb, and Ni was 78.4%, 84.3%, and 40.1%, respectively, in the field scale EK system applied 0.35 V/cm and 0.05M lactic acid for 20 days. Increasing potential gradient would more effectively enhance metal removal than increasing concentration of processing fluid. The reservoir and soil temperatures were majorly related to potential gradient and power consumptio. A $4-16^{\circ}C$ above room temperature was observed in the investigated system. It was found that the temperature increase in soil transported the pore water and metals from bottom to the topsoil. This vertical transport phenomenon is critical for the electrokinetic process to remediate in-situ deep pollution.

Electrokinetics Evaluation of Poly(styrene-ethylene-butylene-styrene) Based Anion Exchange Membrane (Poly(styrene-ethylene-butylene-styrene)계 고분자 음이온교환막 계면동전위 특성평가)

  • Son, Tae Yang;Yun, Jun Seong;Han, Song I;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.399-405
    • /
    • 2017
  • The zeta potential, called an electrokinetic potential, refers to the potential difference caused by electrodynamic phenomenon, which is a value obtained by quantifying the surface charge property. The zeta potential has been actively studied for membrane fouling, confirmation of modification and substituent confirmation through surface charge analysis. The methods of measurement for zeta potential were developed on the basis of electrophoresis, electrosmosis and streaming potential. Among them, it was known that the streaming potential method was suitable for the flat sheet membrane. So, in this study, aminated poly(styrene-ethylene-butylene-styrene) membranes were prepared by introducing ammonium groups and the streaming potentials of the prepared membranes were measured by using an electrokinetic potential analyzer (SurPASS) and the results were analyzed.

The 3-D Simulation of Electrophoresis Method in Leachate System for Repairing of Leaks in Waste Landfill Geomembrane Liner (폐기물 매립지 차수층 누출시 전기영동 복원을 위한 침출수 환경에서의 3차원 형상 모사 연구)

  • Han, Sang-Jae;Kim, Jong-Yun;Kim, Byung-Il;Kim, Soo-Sam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.17-25
    • /
    • 2010
  • Electrophoresis may offer a new technique to repair in service leaking geomembrane liner of municipal solid waste (MSW) impoundment. The method involves introducing a suspended clay particles, which are charged negatively, into the leakage in geomembrane liners by electrokinetic phenomena and formation of clay cake around leakage for prevention of leachate outflows. Therefore, the 3-dimensional leakage simulation experiments are conducted to evaluate the field applicability of sealing leaks of waste impoundment. In addition, the adequateness of optimum influence factors deduced from 1-dimensional experiments is evaluated. After the test, the total size (width, length) of clay cake formation around leak is increased with enlargement of leakage diameter and distance decrease detween anode and cathode.

Electrokinetic Remediation of Organic Mixture Contaminated Soil (복합 유기 오염물로 오염된 세립질 지반의 Electrokinetic 정화 처리에 관한 연구)

  • 김수삼;한상재;김강호
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.349-356
    • /
    • 2002
  • In this research, phenol was selected as a representative hydrophilic organic compound and phenanthrene as a representative hydrophobic organic contaminant in petroleum. Fine-grained soil which was manufactured artificially in laboratory was contaminated and EK remediation tests were executed. Also, in order to increase removal efficiency, the surfactant that had been used with improvement technique at the pump-and-treat was used by enhanced method. In the test, the phenol which has high solubility is easily removed, but phenanthrene which has low solubility is almost not. Also, it seems to be the delay phenomenon that the phenanthrene is accumulated near the cathode department vicinity at the enhanced technique which applied the surfactant, but the removal efficiency increases as the surfactant concentration increases. By the test which increases with time, the enhanced method with increasing time is more efficient than the method with increasing surfactant.

Dehydration and pore swelling effects on the transfer of PEG through NF membranes

  • Escoda, Aurelie;Bouranene, Saliha;Fievet, Patrick;Deon, Sebastien;Szymczyk, Anthony
    • Membrane and Water Treatment
    • /
    • v.4 no.2
    • /
    • pp.127-142
    • /
    • 2013
  • In order to investigate the significance of "salting-out" and "pore swelling" effects on the nanofiltration of neutral solutes, rejection properties of two NF ceramic and polymeric membranes were studied with single polyethyleneglycol (PEG) solution and mixed PEG/inorganic electrolyte solutions. For both membranes, the rejection rate of PEG was found to decrease significantly in the presence of ions. In the case of the ceramic membrane (rigid pores), this phenomenon was imputed to the sole partial dehydration of PEG molecules induced by the surrounding ions. This assumption was confirmed by the lowering of the PEG rejection rates which followed the Hofmeister series. Experimental data were used to compute the resulting decrease in the Stokes radius of PEG molecules in the presence of the various salts. Concerning the polymeric membrane, the decrease in the rejection rate was found to be systematically higher than for the ceramic membrane. The additional decrease was then ascribed to the swelling of the pores. The experimental data of rejection rates were then used to compute the variation in the mean pore radius in the presence of the various salts. The pore swelling phenomenon due to accumulation of counterions inside pores was supported by electrokinetic charge density measurements.