• Title/Summary/Keyword: electrofusion

Search Result 78, Processing Time 0.025 seconds

Production of Nuclear Transplant Embryos Using Follicular Oocytes in Rabbits (토끼에서 난포란을 이용한 핵이식배 생산에 관한 연구)

  • 김창근;정영채;신언익;임홍순;김홍률;정영호;윤종택;이종완;권처진
    • Journal of Embryo Transfer
    • /
    • v.10 no.2
    • /
    • pp.105-113
    • /
    • 1995
  • This study was conducted to examine the efficiency of enucleation and blastomere isolation from recipient oocytes and donor embryos, respectively and to determine the effect of oocyte age and electric voltage on the fusion rate and in vitro development of the fused oocytes in rabbit nuclear transplantation. Immature oocytes collected from ovarian follicles were matured in vivo for 12 h in TCM-199 containing FCS and hormones and in vivo matured oocytes were collected 17 to 18 h post-HCG. The fresh and frozen donor embryos of 8- to 16-cell stage were collected from the oviduct of superovulated does. The proportion of successfully enucleated oocytes was greatly lower in in vitro matured oocytes (42.3%) than that (62.7%) in in vivo matured oocytes The level of cytochalasin B for in vivo matured oocytes did not affect the efficiency of enuleation, but 7.5 $\mu$g /mL cytochalasin B for in vitro matured oocytes showed a high enucleation rate significantly. The isolation efficiency of a single blastomere nucleus did not differ between 8- and 16-cell stage embryos. The percentage of single blastomeres isolated from 16-cell stage fresh embryos after 0.5% pronase treatment was greatly higher at 16-min treatment (94.4%) than at 8-min(78. 1%) and the blastomeres(61.5%) isolated from frozen-thawed embryos after 16-min pronase were significantly fewer than those of fresh embryos. The age of recipient oocytes affected nuclear fusion rate. The reconstituted oocytes fused at 24-h age showed slightly higher fusion rate (77.8%) than those (65.0%)fused at 18-h age. The fusion rate of in vitro and in vivo matured oocytes inserted with fresh blastomere did not differ among electric voltages, but the cleavage rate and development to morula-blastocysts of in vitro matured oocytes was more higher under 0.6 kV/cm than under 0.8 to 1.2 kV/cm, while the cleavage rate and development of in vivo matured oocytes was higher under 0.8 to 1.0 kV/cm than under 1.2 kV/cm. The fusion and cleavage rate fol1owing insertion with frozen-thawed blastomere was not different between the in vitro and in vivo matured oocytes and was similar to those from fresh blastomere insertion.

  • PDF

Influence on In Vitro Development in Nuclear Transplant Rabbit Embryos using Cryopreserved Donor Embryos (동결 수정란을 공핵란으로 사용한 토끼 핵이식 수정란의 체외 발달에 관한 연구)

  • 박충생;조성근;전병균;강태영;공일근;이효종;최상용
    • Journal of Embryo Transfer
    • /
    • v.12 no.1
    • /
    • pp.11-20
    • /
    • 1997
  • The influence of cryopreservation of donor embryos on the in vitro developmental potential in the nuclear transplant rabbit embryos was evaluated. The embryos of 16-cell stage were collected and cryopreserved with EFS solution by vitrification method. The frozen embryos were thawed and synchronized to S and G$_1$ phase of 32-cell stage. The recipient/ cytoplasms were obtained by removing the first polar body and chromosome mass from the oocytes collected by non-disruptive microsurgery procedure. The separated S and G$_1$ phase blastomeres of 32-cell stage were injected into enucleated recipient cytoplasms by micromanipulation. After culture until 20 hrs post-hCG injection, the nuclear transplant oocytes were electrofused and activated by electrical stimulation. The fused nuclear transplant embryos were co-cultured with rabbit oviduct epithelial cells. After in vitro culture for 120 hrs, the nuclear transplant embryos developed to blastocyst stage were stained with Hoechst 33342 dye and their blastomeres were counted. The electrofusion rate was significantly (P<0.05) reduced in the frozen nuclear donor,compared with fresh donor nuclei as 80.0 vs 62.8% in S phase and 81.7 vs 64.8% in G$_1$phase, respectivley. The in vitro developmental rate to blastocyst stage with the S and G$_1$phase of fresh embryos(26.3 and 61.1%, respectively) was found significantly (P<0.05) higher, compared to the S and G]phase of frozen embryos(11.9 and 34.6%, respectively). When frozen as well as fresh donor embryos were synchronized to G$_1$ phase, the in vitro developmental rate to blastocyst stage was significantly (P<0.05) higher, compared with S phase donor nuclei. The cell counts of nuclear transplant embryos developed to blastosyst stage were significantly (P<0.05) more in G$_1$ phase of fresh or frozen embryos (180.1 and 125.7 cells, respectively), compared with S phase nuclear donor (145.1 and 103.7 cells, respectively). From the above results it was concluded that the rabbit embryos cryo- preserved by vitrification might be available as nuclear donor, though the developmentalpotential and cell counts of nuclear transplant rabbit embryos were decreased significantly.

  • PDF

Production of Cloned Embryos and Animals following Regulation of Cell Cycle of Donor Nucleus and Type of Recipient Cytoplasm (토끼에서 공핵란의 세포주기 조절과 수핵란의 세포질 상태에 따른 핵이식 수정란의 체외 발달과 복제동물의 생산)

  • 박충생;전병균;하란조;윤희준;곽대오;이효종;최상용
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.259-267
    • /
    • 1997
  • To improve the efficiency of production of cloned embryos and animals by nuclear transplantation in the rabbit, the effect of cell cycle of donor nuclei and type of recipient cytoplasm on the in vitro developmental potential and production efficiency of offspring was determined. The embryos of 16-cell stage were collected from the mated does at 48h post-hCG injection and they were synchronized to G$_1$ phase of 32-cell stage. The oocytes collected at 14h post-hCG injection were freed from cumulus cells and then enucleated. One group of the enucleated cytoplasms was activated by electrical stimulation prior to injection of donor nucleus, and the other group was not pre-activated. The separated G$_1$phase blastomeres of 32-cell stage embryos were injected into the perivitelline space of recipient cytoplasms. After culture for 20h post-hCG injection, the nuclear transplant oocytes were electrofused and activated by electrical stimulation and the fused nuclear transplant embryos were co-cultured for 120h and the nuclear transplant embryos developed to blastocyst stage were stained with Hoechst 33342 dye and their blastomeres were counted. Some of the nuclear transplant embryos developed in vitro to 2- to 4-cell stage were transferred into the oviducts of synchronized recipient does. The electrofusion rate was similar between the types of donor nuclei and recipient cytoplasms used. However, the nuclear transplant embryos using G$_1$ phase donor nuclei were developed to blastocyst at higher rate(60.3%) than those using S phase ones(24.7%). Also, when non-preactivated oocytes were used as recipient cytplasms, the develop-mental rates of nuclear transplant embryos to blastocysts were significantly(P< 0.05) higher(57.1%) than those using preactivated ones(20.8%). The cell counts of nuclear transplant embryos developed to blastosyst stage were increased signficantly(P<0.05) more in the non-preactivated recipient cytoplasm(163.7 cells), as compared whit the preactivated recipient cytoplasm(85.4 cells), A total of 49 nuclear transplant embryos were tranferrid into 5 recipient does, of which two offsprings were produced from a foster mother 31 days after embryo transfer. these results showed that the blastomeres of G1 phase and non-preactivated oocytes might be utillzed efficiently as donor nuclei and recipient cytoplasms in the nuclear transplant procedure, thought the offspring production remained still low.

  • PDF

Interspecies Nuclear Transfer using Bovine Oocytes Cytoplasm and Somatic Cell Nuclei from Bovine, Porcine, Mouse and Human (소, 돼지, 생쥐, 사람의 체세포와 소 난자를 이용한 이종간 핵 이식)

  • 박세영;김은영;이영재;윤지연;길광수;김선균;이창현;정길생;박세필
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.3
    • /
    • pp.235-243
    • /
    • 2002
  • This study was designed to examine the ability of the bovine (MII) oocytes cytoplasm to support several mitotic cell cycles under the direction of differentiated somatic cell nuclei of bovine, porcine, mouse and human. Bovine GV oocytes were matured in TCM-199 supplemented with 10% FBS. At 20h after IVM, recipient oocytes were stained with 5 $\mu\textrm{g}$/$m\ell$ Hoechst and their 1st polar body (PB) and MII plate were removed by enucleation micropipette under UV filter. Ear skin samples were obtained by biopsy from an adult bovine, porcine, mouse and human and cultured in 10% FBS added DMEM. Individual fibroblast was anlaysed chromosome number to confirm the specificity of species. Nuclear transferred (NT) units were produced by electrofusion of enucleated bovine oocytes with individual fibroblast. The reconstructed embryos were activated in 5 $\mu$M ionomycin for 5 min followed by 1.9 mM 6-dimethylaminopurine (DMAP) in CR1aa for 3 h. And cleaved NT embryos were cultured in CR1aa medium containing 10% FBS on monolayer of bovine cumulus cell for 8 days. Also NT embryo of 4~8 cell stage was analysed chromosome number to confirm the origin of nuclear transferred somatic cell. The rates of fusion between bovine recipient oocytes and bovine, porcine, mouse and human somatic cells were 70.2%, 70.2%, 72.4% and 63.0%, respectively. Also, their cleavage rates were 60.6%, 63.7%, 54.1% and 62.7%, respectively, there were no differences among them. in vitro development rates into morula and blastocyst were 17.5% and 4.3% in NT embryos from bovine and human fibroblasts, respectively. But NT embryos from porcine and mouse fibroblasts were blocked at 16~32-cell stage. The chromosome number in NT embryos from individual fibroblast was the same as chromosome number of individual species. These results show that bovine MII oocytes cytoplasm has the ability to support several mitotic cell cycles directed by newly introduced nuclear DNA.

Effects of Donor Somatic Cell Conditions on In Vitro Development of Nuclear Transplanted Porcine Embryos (돼지 공여세포의 조건이 핵이식 수정란의 체외발달에 미치는 영향)

  • 홍승표;박준규;이명열;이지삼;정장용
    • Journal of Embryo Transfer
    • /
    • v.16 no.3
    • /
    • pp.213-221
    • /
    • 2001
  • This study was conducted to examine in vitro developmental ability of porcine embryos after somatic cell nuclear transfer. The porcine ear fell was cultured in vitro for confluency in serum-starvation condition(TCM-199 + 0.5% FBS) far 3~6 days of cell confluency. The zona pellucida of IVM oocytes were partially drilled using laser system. Single somatic cell was individually transferred into enucleated oocytes. And the reconstructed embryos were electrically fused(single DC 1.9kv/cm, 30$\mu$ sec) with 0.3M mannitol. After electrofusion, embryos were activated(single AC 5v/mm, 5sec) and cultured in HCSU-23 medium containing 10% FBS at 39$^{\circ}C$, 5% $CO_2$ in air for 6 to 8 days. The fusion rate of donor cells was 45.6, 36.8 and 46.1% in 3~4, 5~6 days of serum starvation and non serum starvation(N-S), and were 52.7. 53.0 and 51.7% in 1~2. 5~6 and 13~14 passages of donor cell culture, respectively. No significant difference was found in the fusion rate of donor cells by the duration of serum starvation treatment or the number of donor cell passages. By the size of donor cells, however, the fusion rate was significantly higher(P<0.05) for reconstructed embryos derived from 25r $\mu$m $\geq$ site of donor cells (65.3%) than that of 25~30$\mu$ m(42.5%) or 30$\mu$ m(45.5%)$\leq$ cells. The cleavage rate was significantly (P<0.05) higher in 3~4 darts of serum starvation treatment(67.1%) than that in N-S (50.7%) or 5~6 days of starvation(57.1%). The activation rate by the size of donor cells in fused oocytes was 56.5, 68.8 and 58.5%, respectively, and was not significant.

  • PDF

A study for detection of melt flow zone about polyethylene butt fusion joints (폴리에틸렌 배관 버트융착부 열용융거리 측정에 대한 연구)

  • Kil, Seonghee;Kim, Younggu;Jo, NYoungdo;Lee, Yeonjae
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.103-109
    • /
    • 2016
  • Polyethylene pipes has useful benefits which are anti-corrosive and flexible material, so it is used to gas pipes but also class 3 water pipes of nuclear power plant, process pipes of petrochemical plant and chemical plant. So the usage of polyethylene pipes is widely increased. But it has been limited for the usage of polyethylene, because it can not be directly detected to fusion joints by using non destructive evaluation. Polyethylene pipes are connected by two methods, one is butt fusion and the other is electrofusion. Butt fusion is widely used to connecting the pipes. It is proposed to method for determining the reliability of joints in this study that is detection of the melt flow zone at fusion joints. In this study, middle density polyethylene is used, outside diameter of the test specimen is 225mm and thickness is 20.5mm. Speed of ultrasonic of this test specimen is 2,200m/s. Test specimens were fabricated by varying the heating time which means from 0% to 130% applying time through heating plate to polyethylene for detecting melt flow zone. Also 4 additional test specimens were made, one was made that not scrapping attached surface of pipes but applying 100% of the proper heating time and the others were made to include of soil, gravel and vinly tape paper at fusion joints, that were also applied 100% of proper heating time. Ultrasonic testing to measure the melt flow zone of 20 test specimens was conducted by using 3.5MHz and 5.0MHz ultrasonic probes and melt flow zone measuring was conducted to three times at different point to one specimen. To differentiate the melt flow zone signal, post image processing was equally conducted to all test results and image levels, contrast, sharpen, threshold were adopted to all teat results and the test results were displayed gray scale. From the results, for the shorter heating times the reflection area of multiple echo have been increased, so the data was obtained from the position where it can be eliminated as much as possible. At 80% of proper heating time(168 sec.), the signal of melt flow zone was obtained clearly, so measuring could be conducted. From 7% of proper heating time(15 sec.) to shorter heating times. we could not obtain the signal because test specimen was not fused. From the result, we can verify that measuring of melt flow zone by using phased array ultrasonic imaging method is possible. And we can verify to complete and incomplete butt fusion by measuring the melt flow zone.

Developmental Potentials of Clone Embryos Derived from Bovine Fetal Fibroblast Cells (소 태아섬유아세포 유래 복제란의 발육능에 관한 연구)

  • Cheong, H.T.;Kwon, D.J.;Park, Y.S.;Hwang, H.S.;Park, C.K.;Yang, B.K.;Kim, C.I.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.1
    • /
    • pp.49-57
    • /
    • 2000
  • This study was conducted to investigate the developmental potential of cloned embryos derived from bovine fetal fibroblast cells, and the effect of quiescent treatment, passage number and origin of donor cells on in vitro development of cloned embryos. Fetal skin and liver-derived fibroblast cells were transferred to enucleated oocytes after serum starvation or nontreatment (cycling). After electrofusion. reconstituted embryos were activated with $Ca^{++}$-ionophore and cycloheximide, and cocultured for 7~9 days with BRL cells. Some blastocysts were transferred to recipient cows 7~8 days post estrus. The development rate to the blastocyst stage of serum starved cell-derived embryos was higher (25.3%) than that of actively dividing cells-derived embryos (15.9%), The rates of blastocyst formation were 23.1~25.0% after transfer of cell passaged 4 to 6 times, and 23.8 and 25.2% after transfer of fetal skin and liver cells, respectively. After embryo transfer, 34.4% and 15.6% of recipient cows were pregnant on Day 60 and 120, respectively, and one male calf was produced from skin-derived vitrified blastocyst. The result of this study showed that the development of cloned embryos. was enhanced by quiescent treatment, but did not different among the cells passaged 4 to 6 times, and between skin and liver cells. This result also confirms that offspring can be obtained from the vitrified clone embryo derived from fetal skin cell.

  • PDF

Effects of Recipient Oocytes and Electric Stimulation Condition on In Vitro Development of Cloned Embryos after Interspecies Nuclear Transfer with Caprine Somatic Cell (수핵난자와 전기적 융합조건이 산양의 이종간 복제수정란의 체외발달에 미치는 영향)

  • 이명열;박희성
    • Reproductive and Developmental Biology
    • /
    • v.28 no.1
    • /
    • pp.21-27
    • /
    • 2004
  • This study was conducted to investigate the developmental ability of caprine embryos after somatic cell interspecies nuclear transfer. Recipient bovine and porcine oocytes were obtained from slaughterhouse and were matured in vitro according to established protocols. Donor cells were obtained from an ear-skin biopsy of a caprine, digested with 0.25% trypsin-EDTA in PBS and primary fibroblast cultures were established in TCM-199 with 10% FBS. The matured oocytes were dipped in D-PBS plus 10% FBS + 7.5 $\mu$ g/ml cytochalasin B and 0.05M sucrose. Enucleation were accomplished by aspirating the first polar body and partial cytoplasm which containing metaphase II chromosomes using a micropipette with an out diameter of 20∼30 $\mu$m. A Single donor cell was individually transferred into the perivitelline space of each enucleated oocyte. The reconstructed oocytes were electric fusion with 0.3M mannitol fusion medium. After the electrofusion, embryos were activated by electric stimulation. Interspecies nuclear transfer embryos with bovine cytoplasts were cultured in TCM-199 medium supplemented with 10% FBS including bovine oviduct epithelial cells for 7∼9 day. And porcine cytoplasts were cultured in NCSU-23 medium supplemented with 10% FBS for 6 ∼8 day at $39^{\circ}C, 5% CO_2 $in air. Interspecies nuclear transfer by recipient bovine oocytes were fused with electric length 1.95 kv/cm and 2.10 kv/cm. There was no significant difference between two electric length in fusion rate(47.7 and 44.6%) and in cleavage rate(41.9 and 54.5%). Using electric length 1.95 kv/cm and 2.10 kv/cm in caprine-porcine NT oocytes, there was also no significant difference between two treatments in fusion rate(51.3 and 46.1%) and in cleavage rate(75.0 and 84.9%). The caprine-bovine NT oocytes fusion rate was lower(P<0.05) in 1 pulse for 60 $\mu$sec(19.3%), than those from 1 pulse for 30 $\mu$sec(50.8%) and 2 pulse for 30 $\mu$sec(31.0%). The cleavage rate was higher(P<0.05) in 1 pulse for 30 $\mu$sec(53.3%) and 2 pulse for 30 $\mu$sec(50.0%), than in 1 pulse for 60 $\mu$sec(18.2%). The caprine-porcine NT oocytes fusion rate was 48.1% in 1 pulse for 30 $\mu$sec, 45.2% in 2 pulse for 30 $\mu$sec and 48.6% in 1 pulse for 60 $\mu$sec. The cleavage rate was higher(P<0.05) in 1 pulse for 30 $\mu$sec(78.4%) and 1 pulse for 60 $\mu$sec(79.4%), than in 2 pulse for 30 $\mu$sec(53.6%). In caprine-bovine NT embryos, the developmental rate of morula and blastocyst stage embryos were 22.6% in interspecies nuclear transfer and 30.6% in parthenotes, which was no significant differed. The developmental rate of morula and blastocyst stage embryos with caprine-porcine NT embryos were lower(P<0.05) in interspecies nuclear transfer(5.1%) than parthenotes(37.4%).