• 제목/요약/키워드: electrode roughness

검색결과 231건 처리시간 0.029초

Hybrid complementary circuits based on organic/inorganic flexible thin film transistors with PVP/Al2O3 gate dielectrics

  • Kim, D.I.;Seol, Y.G.;Lee, N.E.;Woo, C.H.;Ahn, C.H.;Ch, H.K.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.479-479
    • /
    • 2011
  • Flexible inverters based on complementary thin-film transistor (CTFTs) are important because they have low power consumption and other advantages over single type TFT inverters. In addition, integrated CTFTs in flexible electronic circuits on low-cost, large area and mechanically flexible substrates have potentials in various applications such as radio-frequency identification tags (RFIDs), sensors, and backplanes for flexible displays. In this work, we introduce flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The CTFTs were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. Basic electrical characteristics of individual transistors and the whole CTFTs were measured by a semiconductor parameter analyzer (HP4145B, Agilent Technologies) at room temperature in the dark. Performance of those devices then was measured under static and dynamic mechanical deformation. Effects of cyclic bending were also examined. The voltage transfer characteristics (Vout- Vin) and voltage gain (-dVout/dVin) of flexible inverter circuit were analyzed and the effects of mechanical bending will be discussed in detail.

  • PDF

Dopant가 주입된 poly-Si 기판에서 Ta-silicides의 형성 및 dopant 의 거동에 관한 연구 (Study on the formation of Ta-silicides and the behavior of dopants implanted in the poly-Si substrates)

  • 최진석;조현춘;황유상;고철기;백수현
    • 한국재료학회지
    • /
    • 제1권2호
    • /
    • pp.99-104
    • /
    • 1991
  • Ta-silicide의 게이트 전극 및 비트라인(bit line)으로의 사용가능성을 알아보기 위하여 As, P, $BF_2$$5{\times}10^15cm^-2$의 농도로 이온주입된 다결정 실리콘에 탄탈륨을 스퍼터링으로 증착한 후 급속 열처리로 Ta-silicide를 형성하였다. 형성된 Ta-silicide의 특성은 4-탐침법, X-rayghlwjf, SEM 단면사진과 ${\alpha}$-step으로 조사하였으며, 불순물들의 거동은 Secondary Ion Mass Spectroscopy(SIMS)로 알아보았다. $TaSi_2$의 형성은 $800^{\circ}C$에서 시작하며 $1000^{\circ}C$ 이상에서 완료됨을 알았다. 형성된 $TaSi_2$층으로 out-diffusion 하였다.

  • PDF

나노 블록공중합체 템플레이트에 ALD로 제조된 센서용 TiO2 박막의 미세구조 연구 (Microstructure of TiO2 sensor electrode on nano block copolymertemplates using an ALD)

  • 박종성;한정조;송오성;전승민;김형기
    • 센서학회지
    • /
    • 제18권3호
    • /
    • pp.239-244
    • /
    • 2009
  • We fabricated nano-templates by low temperature BCP(block copolymer) process at 180 $^{\circ}C$, then we deposited 10 nm-thick $TiO_2$ layers with ALD(atomic layer deposition) at low temperature of 150 $^{\circ}C$. Through FE-SEM analysis, we confirmed the successful formation of the groove-type(width of crest : 30 nm, width of trough : 18 nm) and the cylinder-type(diameter : 10 nm, distance between hole : 25 nm) templates. Moreover, after $TiO_2$-ALD processing, we confirmed the deposition of the uniform nano layers of $TiO_2$ on the nano-templates. Through AFM analysis, the pitches of the crest-through(in groove-type) and hole-hole(in cylinder-type) were the same before and after $TiO_2$-ALD processing. In addition, we indirectly determined the existence of the uniform $TiO_2$ layers on nano-templates as the surface roughness decreased drastically. We successfully fabricated nano-template at low temperature and confirmed that the three-dimensional nano-structure for sensor application could be achieved by $TiO_2$-ALD processing at extremely low temperature of 150 $^{\circ}C$.

NiO 완충층 두께 조절에 의한 OLEDs 전기-광학적 특성 (Electrical and Luminescent Properties of OLEDs by Nickel Oxide Buffer Layer with Controlled Thickness)

  • 최규채;정국채;김영국;조영상;최철진;김양도
    • 대한금속재료학회지
    • /
    • 제49권10호
    • /
    • pp.811-817
    • /
    • 2011
  • In this study, we have investigated the role of a metal oxide hole injection layer (HIL) between an Indium Tin Oxide (ITO) electrode and an organic hole transporting layer (HTL) in organic light emitting diodes (OLEDs). Nickel Oxide films were deposited at different deposition times of 0 to 60 seconds, thus leading to a thickness from 0 to 15 nm on ITO/glass substrates. To study the influence of NiO film thickness on the properties of OLEDs, the relationships between NiO/ITO morphology and surface properties have been studied by UV-visible spectroscopy measurements and AFM microscopy. The dependences of the I-V-L properties on the thickness of the NiO layers were examined. Comparing these with devices without an NiO buffer layer, turn-on voltage and luminance have been obviously improved by using the NiO buffer layer with a thickness smaller than 10 nm in OLEDs. Moreover, the efficiency of the device ITO/NiO (< 5 nm)/NPB/$Alq_3$/ LiF/Al has increased two times at the same operation voltage (8V). Insertion of a thin NiO layer between the ITO and HTL enhances the hole injection, which can increase the device efficiency and decrease the turn-on voltage, while also decreasing the interface roughness.

투명 전극 ITO 박막의 열처리 영향과 플라즈마 응용 표시소자 제작에 관한 연구 (Optically Transparent ITO Film and the Fabrication of Plasma Signboard)

  • 조영제;김재관;한승철;곽준섭;이지면
    • 대한금속재료학회지
    • /
    • 제47권1호
    • /
    • pp.44-49
    • /
    • 2009
  • 본 연구에서는 2인치 ITO의 타깃으로 ITO박막을 성장시킨 후 RTA 처리로 인한 전기적, 광학적 특성의 변화를 조사하였으며, RTA 처리된 ITO 박막을 이용하여 플라즈마 응용 사인보드를 제작 및 구동하였다. RTA공정으로 열처리한 ITO는 투과도는 증가하며, 비저항은 감소함을 관찰하였으며, 투과도의 증가는 RTA로 인한 결정성의 증가로 인한 결과이고, 비저항의 감소는 결정성의 증가와 더불어 치환형 주석의 원자수가 증가하였다고 사료된다. ITO를 이용하여 사인보드 제작시 방전cell의 압력은 3-5 Torr가 적당함을 알 수 있었으며, 전극 간격을 조절하여 120 V 정도의 낮은 플라즈마 개시 전압을 갖는 플라즈마 응용 사인보드를 성공적으로 제작 할 수 있었다.

F 농도 조절을 통한 AZO 박막의 광학적 전기적 특성 향상 (Improvement of Optical and Electrical Properties of AZO Thin Films by Controlling Fluorine Concentration)

  • 장수영;장준성;조은애;;김지훈;문종하;김진혁
    • 한국재료학회지
    • /
    • 제31권3호
    • /
    • pp.150-155
    • /
    • 2021
  • Zinc oxide (ZnO) based transparent conducting oxides (TCO) thin films, are used in many applications such as solar cells, flat panel displays, and LEDs due to their wide bandgap nature and excellent electrical properties. In the present work, fluorine and aluminium-doped ZnO targets are prepared and thin films are deposited on soda-lime glass substrate using a RF magnetron sputtering unit. The aluminium concentration is fixed at 2 wt%, and the fluorine concentration is adjusted between 0 to 2.0 wt% with five different concentrations, namely, Al2ZnO98(AZO), F0.5AZO97.5(FAZO1), F1AZO97(FAZO2), F1.5AZO96.5(FAZO3), and F2AZO96(FAZO4). Thin films are deposited with an RF power of 40 W and working pressure of 5 m Torr at 270 ℃. The morphological analysis performed for the thin film reveals that surface roughness decreases in FAZO1 and FAZO2 samples when doped with a small amount of fluorine. Further, optical and electrical properties measured for FAZO1 sample show average optical transmissions of over 89 % in the visible region and 82.5 % in the infrared region, followed by low resistivity and sheet resistance of 3.59 × 10-4 Ωcm and 5.52 Ω/sq, respectively. In future, these thin films with excellent optoelectronic properties can be used for thin-film solar cell and other optoelectronics applications.

SnO2 열산화감지막의 제작 및 특성 (Characteristics and Fabrication of Thermal Oxidized-SnO2)

  • 강봉휘;이덕동
    • 센서학회지
    • /
    • 제11권6호
    • /
    • pp.342-349
    • /
    • 2002
  • 본 논문에서는 새로운 방식의 금속 산화물 감지막의 형성 기술에 대해서 제안을 하였다. Sn 증착을 위해 사용된 기판은 Pt 전극을 가진 실리콘 웨이퍼를 이용하였다. 증착 방식은 금속 Sn이 연속적인 막이 아닌 island로만 형성된 상태로 하였다. 제안된 방식의 최적의 Sn 증착 조건을 구하기위해 Pt 전극간의 저항이 $1\;k{\Omega}$, $5\;k{\Omega}$, $10\;k{\Omega}$$50\;k{\Omega}$이 되도록 Sn을 증착하여 시료를 제작하였다. 또한 일반적인 방식과 새롭게 제안된 방식의 시료를 비교하기 위해서 Sn 막의 두께가 $1,500\;{\AA}$인 시료를 준비하였다. 이것들을 $700^{\circ}C$의 산소분위기에서 3시간 동안 산화를 하여 $SnO_2$를 형성하였다. 산화물 감지막들의 특성 평가를 위해서 SEM, XRD 및 AFM을 이용하였다. 분석을 통하여 $10\;k{\Omega}$의 시료($300\;{\AA}$)가 최적의 감지막 증착 조건임을 알았다. 또한 제조된 감지막을 다양한 농도의 부탄, 프로판 및 일산화탄소에 대해서 동작온도 $250^{\circ}C$, $300^{\circ}C$$350^{\circ}C$의 경우에 대해서 측정하였다. 그 결과 촉매를 첨가하지 않았음에도 불구하고 모든 가스에 대한 높은 감도 특성을 나타내었다.

Stamped Leadframe의 표면 품질에 미치는 전해연마 효과 (Effect of Electropolishing on Surface Quality of Stamped Leadframe)

  • 남형곤;박진구
    • 마이크로전자및패키징학회지
    • /
    • 제7권3호
    • /
    • pp.45-54
    • /
    • 2000
  • Stamped Leadframe에 전해연마를 적용하여 가공면에 존재하는 버어(burr)의 제거와 그에따른 잔류응력 완화효과를 보았다. 또한 표면 청정화에 따른 은(Ag)도금면 및 리드프레임 표면 품질의 향상이 있었다. 인산 60% 전해연마액에 고정 전류값 5A와 극간거리 3.0 cm의 조건하에 Alloy42 원소재 리드프레임은 $70^{\circ}C$에서 120초간, C194 원소재 리드프레임은 $50^{\circ}C$에서 90초간 전해연마 하였다. XRD 반가폭(FWHM)을 이용한 잔류응력 측정결과 전해 연마 처리후의 잔류응력값이 스탬핑 이전상태로 회복되었으며, AFM를 이용하여 표면 거칠기 측정결과 Alloy42원소재 리드프레임은 0.079 $\mu\textrm{m}$, C-194원소재 리드프레임은 0.014 $\mu\textrm{m}$의 R$_{근}$값으로 거칠기의 향상이 있었다. XRF를 이용한 도금두께 측정 결과 0.4~0.5 $\mu\textrm{m}$ 정도 두께편차 균일성의 향상이 있었으며, wire bonding온도에서의 bake test결과 금선(gold wire) 과의 접합강도를 높일수 있는 적절한 크기로의 결정립 성장이 관찰되었다 3차원 자동측정 및 표면 경도 측정 통하여 전해연마로 인한 리드프레임 중요부위 치수변화의 신뢰성을 확인할수 있었다.다.

  • PDF

Characteristic of Ru Thin Film Deposited by ALD

  • Park, Jingyu;Jeon, Heeyoung;Kim, Hyunjung;Kim, Jinho;Jeon, Hyeongtag
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.78-78
    • /
    • 2013
  • Recently, many platinoid metals like platinum and ruthenium have been used as an electrode of microelectronic devices because of their low resistivity and high work-function. However the material cost of Ru is very expensive and it usually takes long initial nucleation time on SiO2 during chemical deposition. Therefore many researchers have focused on how to enhance the initial growth rate on SiO2 surface. There are two methods to deposit Ru film with atomic layer deposition (ALD); the one is thermal ALD using dilute oxygen gas as a reactant, and the other is plasma enhanced ALD (PEALD) using NH3 plasma as a reactant. Generally, the film roughness of Ru film deposited by PEALD is smoother than that deposited by thermal ALD. However, the plasma is not favorable in the application of high aspect ratio structure. In this study, we used a bis(ethylcyclopentadienyl)ruthenium [Ru(EtCp)2] as a metal organic precursor for both thermal and plasma enhanced ALDs. In order to reduce initial nucleation time, we use several methods such as Ar plasma pre-treatment for PEALD and usage of sacrificial RuO2 under layer for thermal ALD. In case of PEALD, some of surface hydroxyls were removed from SiO2 substrate during the Ar plasma treatment. And relatively high surface nitrogen concentration after first NH3 plasma exposure step in ALD process was observed with in-situ Auger electron spectroscopy (AES). This means that surface amine filled the hydroxyl removed sites by the NH3 plasma. Surface amine played a role as a reduction site but not a nucleation site. Therefore, the precursor reduction was enhanced but the adhesion property was degraded. In case of thermal ALD, a Ru film was deposited from Ru precursors on the surface of RuO2 and the RuO2 film was reduced from RuO2/SiO2 interface to Ru during the deposition. The reduction process was controlled by oxygen partial pressure in ambient. Under high oxygen partial pressure, RuO2 was deposited on RuO2/SiO2, and under medium oxygen partial pressure, RuO2 was partially reduced and oxygen concentration in RuO2 film was decreased. Under low oxygen partial pressure, finally RuO2 was disappeared and about 3% of oxygen was remained. Usually rough surface was observed with longer initial nucleation time. However, the Ru deposited with reduction of RuO2 exhibits smooth surface and was deposited quickly because the sacrificial RuO2 has no initial nucleation time on SiO2 and played a role as a buffer layer between Ru and SiO2.

  • PDF

Sand-Blasting법을 이용한 활물질/기판간 결합력 향상에 따른 AGM 연축전지의 성능 및 충방전 거동 (Performance and Charging-Discharging Behavior of AGM Lead Acid Battery according to the Improvement of Bonding between Active Material/Substrate using Sand-Blasting Method)

  • 김성준;임태섭;김봉구;손정훈;정연길
    • 한국재료학회지
    • /
    • 제31권2호
    • /
    • pp.75-83
    • /
    • 2021
  • To cope with automobile exhaust gas regulations, ISG (Idling Stop & Go) and charging control systems are applied to HEVs (Hybrid Electric Vehicle) for the purpose of improving fuel economy. These systems require quick charge/discharge performance at high current. To satisfy this characteristic, improvement of the positive electrode plate is studied to improve the charge/discharge process and performance of AGM(Absorbent Glass Mat) lead-acid batteries applied to ISG automotive systems. The bonding between grid and A.M (Active Material) can be improved by applying the Sand-Blasting method to provide roughness to the surface of the positive grid. When the Sand-Blasting method is applied with conditions of ball speed 1,000 rpm and conveyor speed 5 M/min, ideal bonding is achieved between grid and A.M. The positive plate of each condition is applied to the AGM LAB (Absorbent Glass Mat Lead Acid Battery); then, the performance and ISG life characteristics are tested by the vehicle battery test method. In CCA, which evaluates the starting performance at -18 ℃ and 30 ℃ with high current, the advanced AGM LAB improves about 25 %. At 0 ℃ CA (Charge Acceptance), the initial charging current of the advanced AGM LAB increases about 25 %. Improving the bonding between the grid and A.M. by roughening the grid surface improves the flow of current and lowers the resistance, which is considered to have a significant effect on the high current charging/discharging area. In a Standard of Battery Association of Japan (SBA) S0101 test, after 300 A discharge, the voltage of the advanced AGM LAB with the Sand-Blasting method grid was 0.059 V higher than that of untreated grid. As the cycle progresses, the gap widens to 0.13 V at the point of 10,800 cycles. As the bonding between grid and A.M. increases through the Sand Blasting method, the slope of the discharge voltage declines gradually as the cycle progresses, showing excellent battery life characteristics. It is believed that system will exhibit excellent characteristics in the vehicle environment of the ISG system, in which charge/discharge occurs over a short time.