• Title/Summary/Keyword: electrochemical treatment

Search Result 663, Processing Time 0.027 seconds

A Microfluidic Electrochemical Sensor for Detecting the Very Low Concentration Endocrine Disruptor with Self Assembled Monolayer and Preconcentration Technique (자기조립단층과 농축 기술을 이용한 저농도 내분비계 장애물질 검출용 미소유체채널 기반 전기화학 센서)

  • Kim, Suyun;Han, Ji-Hoon;Pak, James Jungho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.628-634
    • /
    • 2016
  • This paper demonstrates a microfluidic electrochemical sensor for detecting endocrine disruptor such as estradiol at a very low concentration by using preconcentration technique. In addition, self-assembled monolayer(SAM) was also employed on the working electrode of the electrochemical sensor in order to increase the estradiol capture efficiency of the sensor. SAM treatment on the working electrode enhanced the specific binding between the surface of the working electrode and the estradiol antibody. The estradiol antibody was applied on the working electrode at different concentrations(10, 20, 50, 100, 200 pg/ml) for observing the concentration dependency. The measured electrochemical redox current changed with the amount of the bound estradiol on the Au working electrode surface and the sensor can detect all the target material when the immobilized antibody amount is more than the estradiol amount in the water. The elecrochemical estradiol sensor without SAM treatment showed a low current of 7.79 nA, while the sensor treated with SAM resulted in 339 nA at 200 pg/ml, which is more than 40 fold higher output current. When combining the preconcentration technique and the SAM-treated electrode, the measured current became more than 100 fold higher than that of the sensor without neither SAM treatment nor preconcentration technique. The combination of these two techniques can would enable the proposed microfluidic electrochemical sensor to detect a very low concentration endocrine disruptor.

Electrochemical treatment of cefalexin with Sb-doped SnO2 anode: Anode characterization and parameter effects

  • Ayse, Kurt;Hande, Helvacıoglu;Taner, Yonar
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.513-525
    • /
    • 2022
  • In this study, it was aimed to evaluate direct oxidation of aqueous solution containing cefalexin antibiotic with new generation Sn/Sb/Ni: 500/8/1 anode. The fact that there is no such a study on treatment of cefalexin with these new anode made this study unique. According to the operating parameters evaluation COD graphs showed clearer results compared to TOC and CLX and thus, it was it was chosen as major parameter. Furthermore, pseudo-first degree kd values were calculated from CLX results to show more accurate and specific results. Experimental results showed that after 60 min of electrochemical oxidation, complete removal of COD and TOC was accomplished with 750 mg L-1 KCl, at pH 7, 50 mA cm-2 current density and 1 cm anode-cathode distance. Also, the stability of the Sn/Sb/Ni anode was evaluated by taking SEM and AFM images and XRD analysis before and after of electrochemical oxidation processes. According to the results, it was not occurred too much change on the anode surface even after 300 h of electrolysis. Thus, it was thought that the anode material was not corroded to a large extent. Furthermore, the removal efficiencies were very high for almost all the time and conditions. According to the results of the study, electrochemical oxidation with new generation Sn/Sb/Ni anodes for the removal of cefalexin antibiotic was found very successful and applicable due to require less reaction time complete mineralization and doesn't require pH adjustment step compared to other studies in literature. In future studies, different antibiotic types should be studied with this anode and maybe with real wastewaters to test applicability of the process in treatment of pharmaceutical wastewaters containing antibiotics, in a better way.

Electrochemical treatment of wastewater using boron doped diamond electrode by metal inter layer

  • KIM, Seohan;YOU, Miyoung;SONG, Pungkeun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.251-251
    • /
    • 2016
  • For several decades, industrial processes consume a huge amount of raw water for various objects that consequently results in the generation of large amounts of wastewater. Wastewaters are consisting of complex mixture of different inorganic and organic compounds and some of them can be toxic, hazardous and hard to degrade. These effluents are mainly treated by conventional technologies such are aerobic and anaerobic treatment and chemical coagulation. But, these processes are not suitable for eliminating all hazardous chemical compounds form wastewater and generate a large amount of toxic sludge. Therefore, other processes have been studied and applied together with these techniques to enhance purification results. These include photocatalysis, absorption, advanced oxidation processes, and ozonation, but also have their own drawbacks. In recent years, electrochemical techniques have received attention as wastewater treatment process that could be show higher purification results. Among them, boron doped diamond (BDD) attract attention as electrochemical electrode due to good chemical and electrochemical stability, long lifetime and wide potential window that necessary properties for anode electrode. So, there are many researches about high quality BDD on Nb, Ta, W and Si substrates, but, their application in effluents treatment is not suitable due to high cost of metal and low conductivity of Si. To solve these problems, Ti has been candidate as substrate in consideration of cost and property. But there are adhesion issues that must be overcome to apply Ti as BDD substrate. Al, Cu, Ti and Nb thin films were deposited on Ti substrate to improve adhesion between substrate and BDD thin film. In this paper, BDD films were deposited by hot filament chemical vapor deposition (HF-CVD) method. Prior to deposition, cleaning processes were conducted in acetone, ethanol, and isopropyl alcohol (IPA) using sonification machine for 7 min, respectively. And metal layer with the thickness of 200 nm were deposited by DC magnetron sputtering (DCMS). To analyze microstructure X-ray diffraction (XRD, Bruker gads) and field emission scanning electron microscopy (FE-SEM, Hitachi) were used. It is confirmed that metal layer was effective to adhesion property and improved electrode property. Electrochemical measurements were carried out in a three electrode electrochemical cell containing a 0.5 % H2SO4 in deionized water. As a result, it is confirmed that metal inter layer heavily effect on BDD property by improving adhesion property due to suppressing formation of titanium carbide.

  • PDF

Electrochemical Enhancement of Carbon Felt Electrode for Vanadium Redox Flow Battery with Grephene Oxide (산화그레핀을 이용한 바나듐레독스흐름전지용 카본펠트전극의 표면개질을 통한 전기화학적 활성개선)

  • LEE, KEON JOO;KIM, SUNHOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.206-211
    • /
    • 2017
  • Carbon felt electrode for the vanadium redox-flow battery (VRFB) has been studied to see the effect of grephene oxide (GO) treatment on the surface of the carbon felt electrode. In this paper, surface of carbon felt electrodes were treated with various concentrations of grephene oxide. Electrochemical analysis, cyclic voltammetry (CV), was performed to investigate redox characteristics as electrode for VRFB. Also the effect of GO on the introduction of functional group on the surface of carbon felt electrodes were investigated using X-ray photoelectron spectroscopy (XPS), which discovered increase in the overall functional group content on the surface of carbon felts.

COD Removal of Rhodamine B from Aqueous Solution by Electrochemical Treatment

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.655-659
    • /
    • 2012
  • This study elucidates the COD removal of dye (Rhodamine B) through electrochemical reaction. Effects of current density (7.2 to 43.3 $mA/cm^2$), electrolyte type (NaCl, KCl, $Na_2SO_4$, HCl), electrolyte concentration (0.5 to 2.0 g/L), air flow rate (0 to 4 L/min) and pH (3 to 11) on the COD removal of Rhodamine B were investigated. The observed results showed that the increase of pH decrease the COD removal efficiency. Whereas, the increase of current density;NaCl concentration and air flow rate caused the increase of the COD removal of Rhodamine B.

A Study on the Recycling of Metals and Removal of Organics By Electrochemical Treatment of Mixed Waste Water of Surface Finishing Industry (표면처리 공정에서 발생하는 혼합 폐수의 전기화학적 처리에 의한 중금속의 재활용 및 유기물의 제거에 관한 연구)

  • 김영석;이중배
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.184-193
    • /
    • 2003
  • Cyclic sweep voltametry was performed to investigate the electrochemical behavior of heavy metal ions and the organic additives in surface finishing process. And electrolysis using parallel plate electrode electrolyzer was carried out to simulate the treatment of real waste water. Results showed that more than 99 percent of Cu was recovered and selective recovery of Cu in mixed waste water was possible, but the possibility of economical recovery of Ni and Cr were very low due to the evolution of hydrogen gas. Electrochemical oxidation of cyanide and organic additives on anode showed very excellent removal rate. The complete removal of several hundred ppm of cynide was possible within several tens minutes and organics within 2 or 3 hours. Even in case of concentrate waste water, the complete removal of COD by using NaCl and air stirring seemed to be possible.

Electrochemical Biosensors for Biomedical and Clinical Applications: A Review

  • Rahman Md. Aminur;Park Deog-Su;Shim Yoon-Bo
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.271-282
    • /
    • 2005
  • There are strong demands for accurate, fast, and inexpensive devices in the medical diagnostic laboratories, such as biosensors and chemical sensors. Biosensors can provide the reliable and accurate informations on the desired biochemical parameters, which is an essential prerequisite for a patient before going for a treatment. They can be used for continuous measurements of metabolites, blood cations, gases, etc. Of these, electrochemical biosensors play an important role in the improvement of public health, because rapid detection, high sensitivity, small size, and specificity are achievable for clinical diagnostics. In this paper, the clinical applications with electrochemical biosensors are reviewed. An attempt is also made to highlight some of the trends that govern the research and developments of the important biosensors that are associated to clinical diagnosis.

Electrochemical Removal Efficiency of Pollutants on ACF Electrodes

  • Oh, Won-Chun;Park, Joung-Sung;Lee, Ho-Jin;Yum, Min-Hyung
    • Carbon letters
    • /
    • v.5 no.4
    • /
    • pp.191-196
    • /
    • 2004
  • The electrochemical removal (ECR) of water pollutants by activated carbon fiber (ACF) electrodes from wastewater was investigated over wide range of electrochemical reaction time. The ECR capacities of ACF electrodes were associated with their internal porosity and were related to physical properties and to reaction time. And, surface morphologies and elemental analysis for the ACFs after electrochemical reaction are investigated by SEM and EDX to explain the changes in adsorption properties. The FT-IR spectra of ACFs for the investigation of functional groups show that the electrochemical treatment is consequently associated with the homogeneous removal of pollutants with the increasing surface reactivity of the activated carbon fiber surfaces. The ACFs were electrochemically reacted to waste water to investigate the removal efficiency for the COD, T-N and T-P. From these removal results of pollutants using ACFs substrate, satisfactory removal performance was obtained. The outstanding removal effects of the ACFs substrate were determined by the properties of the material for adsorption and trapping of organics, and catalytic effects.

  • PDF

Spinel Nanoparticles ZnCo2O4 as High Performance Electrocatalyst for Electrochemical Sensing Antibiotic Chloramphenicol

  • Van-Cuong Nguyen;HyunChul Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.152-160
    • /
    • 2024
  • In this study, ZnCo2O4 nanoparticles were synthesized via the coprecipitation method using different annealing temperatures from 200℃ to 800℃. By varying the treatment temperature, the morphology changed from amorphous to tetragonal, and finally to polygonal particles. As temperature increased, the sizes of the nanoparticles also changed from 5 nm at 200℃ to approximately 500 nm at 800℃. The fabricated material was used to modify the working electrode of a screen-printed carbon electrode (SPE), which was subsequently used to survey the detection performance of the antibiotic, chloramphenicol (CAP). The electrochemical results revealed that the material exhibits a good response to CAP. Further, the sample that annealed at 600℃ displayed the best performance, with a linear range of 1-300 μM, and a limit of detection (LOD) of 0.15 μM. The sensor modified with ZnCo2O4 also exhibited the potential for utilitarian application when the recovery in a real sample was above 97%.

Effect of the Hydrophilic Treatment of Polyolefin Separator on the Electrochemical Characteristics for Ni-MH Secondary Battery (폴리올레핀계 분리막의 친수화 처리방법에 따른 Ni-MH 2차 전지의 전기화학적 특성연구)

  • Song, Li-Gyu;Lee, Yun-Sung
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.263-266
    • /
    • 2013
  • It was investigated the electrochemical characteristics of the Ni-MH battery by hydrophilic process. For adopting the Ni-MH battery in water-electrolyte, polyolefin separator was processed the hydrophilic treatment. No treatment sample did not meet KS standard (KSC 8544) but hydrophilic treatment ones satisfied with the KS standard in electrochemical characteristics, such as discharge performance, retention capacity, and cycle performance. All hydrophilic treatment samples showed similar battery performances. Among them, sulfonation treatment sample exhibited the highest value in aspect of capacity retention rate (> 88%). Furthermore, fluoride treatment sample showed the best cycle performance during battery test. This sample maintained a good cycling performance until $1,480^{th}$ cycle, which was about 3 times as compared with that of KS standard (500 cycle).