• 제목/요약/키워드: electrochemical sensor

검색결과 358건 처리시간 0.032초

표면 기능성을 가진 다공성 실리콘의 Fabry-Perot fringe pattern의 변화를 이용한 유기 화합물의 감지 (Detection of Organic Vapors Using Change of Fabry-Perot Fringe Pattern of Surface Functionalized Porous Silicon)

  • 황민우;조성동
    • 통합자연과학논문집
    • /
    • 제3권3호
    • /
    • pp.168-173
    • /
    • 2010
  • Novel porous silicon chip exhibiting dual optical properties, both Frbry-Perot fringe (optical reflectivity) and photoluminescence had been developed and used as chemical sensors. Porous silicon samples were prepared by an electrochemical etch of p-type sillicon wafer (boron-doped, <100> orientation, resistivity 1 - 10 ${\Omega}$). The ething solution was prepared by adding an equal volume of pure ethanol to an aqueous solution of HF (48% by weight). The porous silicon was illuminated with a 300 W tungsten lamp for the duration of etch. Ething was carried out as a two-electrode Kithley 2420 preocedure at an anodic current. The surface of porous silicon was characterized by FT-IR instrument. The porosity of samples was about 80%. Three different types of porous silicon, fresh porous silicon (Si-H termianated), oxidized porous silicon (Si-OH terminated), and surface-derivatized porous silicon (Si-R terminated), were prepared by the thermal oxidation and hydrosilylation. Then the samples were exposed to the wapor of various organics vapors. such as chloroform, hexane, methanol, benzene, isopropanol, and toluene. Both reflectivity and photoluminescence were simultaneously measured under the exposure of organic wapors.

고전압 하전방식 hydrocarbon 센서의 전기화학적 특성연구 (A study of electrochemical characteristics for high voltage electric charge type hydrocarbon sensor)

  • 홍지태;전영갑;김정훈;서현웅;김호성;이동길;이경준;손민규;김희제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1358-1359
    • /
    • 2008
  • HC(hydrocarbon)센서는 최근 내연기관의 과도상태의 연소 효율 및 배기가스 저감 효율을 높이기 위하여 산소센서와 함께 연소제어 분야에서 많이 사용되고 있다. 현제 HC센서는 전기화학식 및 current limiting 방식을 많이 사용하고 있으며 이는 HC가스의 이온화를 유도하는 촉매를 매질로 하는 전기화학식 센서이다. 이러한 촉매의 경우 장기 사용 시 촉매의 열화 및 변형 등으로 신뢰도가 떨어지게 된다. 본 논문에서는 촉매를 이용하지 않고 HC 가스의 이온화를 위하여 고전압 하전방식의 hydrocarbon센서를 고안하였으며[1], 여러 배출가스를 통한 센서의 전기화학적 성능을 분석하였고 온도 및 HC성분에 따른 전류치 변화를 이용하여 이론적 계산식을 제안하였다.

  • PDF

Various Sensor Applications Based on Conjugated Polymers

  • Lee, Chang-Lyoul
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.103.1-103.1
    • /
    • 2014
  • Due to their excellent optical and electrochemical properties, conjugated polymers have attracted much attention over the last two decades and employed to opto-electrical devices. In particular, conjugated polymers possess many attractive features that make them suitable for a variety of sensing task. For example, their delocalized electronic structures can be strongly modified by varying the surrounding environment, which significantly affected molecular energy level. In other word, conjugated polymers can detect and transduce the environmental information into a fluorescence signal. Conjugated polymers also display amplified quenching compared to small molecule counterparts. This amplified fluorescence quenching is attributed to the delocalization and migration of the excitons along the conjugated polymer backbones. Long backbones of conjugated polymer provide the transporting path for electron as a conduit, allowing that excitons migrate rapidly into quencher site along the backbone. This is often referred to as the molecular wire effect or antenna effect. Moreover, structures of conjugated polymers can be easily tailored to adjust solubility, absorption/emission properties, and regulation of electron/energy transfer. Based on this versatility, conjugated polymers have been utilized to many novel sensory platforms as a promising material. In this tutorial, I will highlight a variety of fluorescence sensors base on conjugated polymer and explain their sensory mechanism together with selected examples from reference literatures.

  • PDF

Assembly of Laccase over Platinum Oxide Surface and Application as an Amperometric Biosensor

  • Quan, De;Kim, You-sung;Yoon, Kyung-Byung;Shin, Woon-sup
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권3호
    • /
    • pp.385-390
    • /
    • 2002
  • Laccase could be successfully assembled on an amine-derivatized platinum electrode by glutaraldehyde coupling. The enzyme layer formed on the surface does not communicate electron directly with the electrode, but the enzymatic activity of the surf ace could be followed by electrochemical detection of enzymatically oxidized products. The well-known laccase substrates, ABTS (2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)) and PPD (p-phenylenediamine) were used. ABTS can be detected down to 0.5 ${\mu}M$ with linear response up to 15 ${\mu}M$ and current sensitivity of 75 nA/ ${\mu}M.$ PPD showed better response with detection limit of 0.05 ${\mu}M$, linear response up to 20 ${\mu}M$, and current sensitivity of 340 nA/ ${\mu}M$ with the same electrode. The sensor responses fit well to the Michaelis-Menten equation and apparent $K_M$ values are 0.16 mM for ABTS and 0.055 mM for PPD, which show the enzymatic reaction is the rate-determining step. The laccase electrode we developed is very stable and more than 80% of initial activity was still maintained after 2 months of uses.

Conducting Metal Oxide Interdigitated Electrodes for Semiconducting Metal Oxide Gas Sensors

  • Shim, Young-Seok;Moon, Hi-Gyu;Kim, Do-Hong;Jang, Ho-Won;Yoon, Young-Soo;Yoon, Soek-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.65-65
    • /
    • 2011
  • We report the application of conducting metal oxide electrodes for semiconducting metal oxide gas sensors. Pt interdigitated electrodes have been commonly used for metal oxide gas sensor because of the low resistivity, excellent thermal and chemical stability of Pt. However, the high cost of Pt is an obstacle for the wide use of metal oxide gas sensors compared with its counterpart electrochemical gas sensors. Meanwhile, relatively low-cost conducting metal oxides are widely being used for light-emitting diodes, flat panel displays, solar cell and etc. In this work, we have fabricated $WO_3$ and $SnO_2$ thin film gas sensors using interdigitated electrodes of conducting metal oxides. Thin film gas sensors based on conducting metal oxides exhibited superior gas sensing properties than those using Pt interdigitated electrodes. The result was attributed to the low contact resistance between the conducting metal oxide and the sensing material. Consequently, we demonstrated the feasibility of conducting metal oxide interdigitated electrodes for novel gas sensors.

  • PDF

비고정화 된 일차원 광결정의 DBR 다공성 실리콘을 이용한 센서와 Drug Delivery로의 응용 (1-D photonic crystals of free-standing DBR PSi for sensing and drug delivery applications)

  • 고영대;김지훈;박종선;김성기;김동수;조성동;손홍래
    • 센서학회지
    • /
    • 제15권6호
    • /
    • pp.391-396
    • /
    • 2006
  • Free-standing multilayer distributed Bragg reflectors (DBR) porous silicon dielectric mirrors, prepared by electrochemical etching of crystalline silicon using square wave currents are treated with polystyrene to produce flexible, stable composite materials in which the porous silicon matrix is covered with caffeine-impregnated polystyrene. Optically encoded DBR PSi/polystyrene composite films retain the optical reflectivity. Optical characteristics of DBR PSi/polystyrene composite films are stable and robust for 2 hrs in a pH=7 aqueous buffer solution. The appearance of caffeine and change of DBR peak were simultaneously measured by UV-vis spectrometer and Ocean optics 2000 spectrometer, respectively.

Simultaneous Electrochemical Determination of Hydroquinone, Catechol and Resorcinol at Nitrogen Doped Porous Carbon Nanopolyhedrons-multiwall Carbon Nanotubes Hybrid Materials Modified Glassy Carbon Electrode

  • Liu, Wei;Wu, Liang;Zhang, Xiaohua;Chen, Jinhua
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.204-210
    • /
    • 2014
  • The nitrogen doped porous carbon nanopolyhedrons (N-PCNPs)-multi-walled carbon nanotubes (MWCNTs) hybrid materials were prepared for the first time. Combining the excellent catalytic activities, good electrical conductivities and high surface areas of N-PCNPs and MWCNTs, the simultaneous determination of hydroquinone (HQ), catechol (CC) and resorcinol (RE) with good analytical performance was achieved at the N-PCNPs-MWCNTs modified electrode. The linear response ranges for HQ, CC and RE are 0.2-455 ${\mu}M$, 0.7-440 ${\mu}M$ and 3.0-365 ${\mu}M$, respectively, and the detection limits (S/N = 3) are $0.03{\mu}M$, $0.11{\mu}M$ and $0.38{\mu}M$, respectively. These results are much better than that obtained on some graphene or CNTs-based materials modified electrodes. Furthermore, the developed sensor was successfully applied to simultaneously detect HQ, CC and RE in the local river water samples.

Lipid Film에 수식된 헤모글로빈의 전기화학적 특성과 $H_{2}O_{2}$응답특성 (Direct electrochemistry of hemoglobin at carbon electrode modified with lipid film and its application as a $H_{2}O_{2}$ sensor)

  • 이동윤;박상현;최용성;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.93-94
    • /
    • 2006
  • In this research, the enhancement of electron-transfer activity of hemoglobin (Hb) in dodecanoic acid film was investigated for the first time. This type of composite film was made on glassy carbon electrode by casting method. Cyclic voltammetric result of the modified electrode displays a well defined redox peaks which was attributed to the direct electrochemical response of Rb. Our results illustrate that Rb exchange electrons directly with electrode and exhibits the characteristics of peroxidase. When we apply this modified electrode as a biosensor, it gives excellent performances in the electrocatalytic reduction of hydrogen peroxide ($H_{2}O_{2}$). Through the optimal conditions, the proposed biosensor shows the linear range for H2O2 determination was from $1{\times}10^{-5}$ to $1.25{\times}10^{-4}mol/L$ with a detection limit of $1{\times}10^{-7}mol/L$. The biosensor retained more than 90% of the initial response after 14 days.

  • PDF

Solution-Processed Two-Dimensional Materials for Scalable Production of Photodetector Arrays

  • Rhee, Dongjoon;Kim, Jihyun;Kang, Joohoon
    • 센서학회지
    • /
    • 제31권4호
    • /
    • pp.228-237
    • /
    • 2022
  • Two-dimensional (2D) nanomaterials have demonstrated the potential to replace silicon and compound semiconductors that are conventionally used in photodetectors. These materials are ultrathin and have superior electrical and optoelectronic properties as well as mechanical flexibility. Consequently, they are particularly advantageous for fabricating high-performance photodetectors that can be used for wearable device applications and Internet of Things technology. Although prototype photodetectors based on single microflakes of 2D materials have demonstrated excellent photoresponsivity across the entire optical spectrum, their practical applications are limited due to the difficulties in scaling up the synthesis process while maintaining the optoelectronic performance. In this review, we discuss facile methods to mass-produce 2D material-based photodetectors based on the exfoliation of van der Waals crystals into nanosheet dispersions. We first introduce the liquid-phase exfoliation process, which has been widely investigated for the scalable fabrication of photodetectors. Solution processing techniques to assemble 2D nanosheets into thin films and the optoelectronic performance of the fabricated devices are also presented. We conclude by discussing the limitations associated with liquid-phase exfoliation and the recent advances made due to the development of the electrochemical exfoliation process with molecular intercalants.

순환 전압전류법의 기초 (Fundamentals of cyclic voltammetry)

  • 신가윤;엄완식;유동재;강석우;김은비;김현우
    • 센서학회지
    • /
    • 제30권6호
    • /
    • pp.384-387
    • /
    • 2021
  • Cyclic voltammetry (CV) is a powerful electrochemical measurement technique that can determine redoxable substances in a solution. The advantage of CV is that we can observe redox behavior over a wide potential range in a short time. Because of its practicality and versatility, CV is used not only in electrochemistry but also in various fields of chemistry, such as inorganic chemistry, organic chemistry, and biochemistry. As technology advances and the popularity of CV grows, the need for trained electrochemists also increases. However, most students do not receive formal training in these technologies as part of their curriculum. There are few concise and accessible resources for learning CV. Therefore, this manuscript provides a brief introduction to cyclic voltammetry to aid readers in collecting and interpreting useful data from cyclic voltammograms.