• Title/Summary/Keyword: electrochemical sensing

Search Result 136, Processing Time 0.025 seconds

Copper phthalocyanine conjugated PANI coated screen printed carbon electrode for electrochemical sensing of 4-NP

  • Ramalingam Manikandan;Jang-Hee Yoon;Seung-Cheol Chang
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.40-54
    • /
    • 2023
  • In this work, we synthesized a novel electrochemical sensing materials based on tetracarboxylic copper phthalocyanine (TcCuPtc) conjugated PANI (TcCuPtc@PANI). The synthesized materials were employed to modify the screen-printed carbon electrode (SPCE) for the selective sensing of 4-nitrophenol. The TcCuPtc was conjugated with conducting polymer of PANI through the electrostatic interaction and π-π electron conjugation, the polymer film of PANI to inhibit the leakage of TcCuPtc from the surface of the electrode. The prepared TcCuPtc@PANI were characterized and confirmed by scanning electron microscopy (SEM) with EDX, ATR-IR, UV-vis absorption spectroscopy, cyclic voltammetry, and differential pulse voltammetry techniques. The prepared TcCuPtc@PANI/SPCE showed an excellent electrocatalytic sensing of 4-NP in the linear concentrations from 3 to 500 nM with a LOD of 0.03 nM and a sensitivity of 8.8294 ㎂/nM cm-2. However, the prepared TcCuPtc@PANI/SPCE showed selective sensing of 4-NP in the presence of other interfering species. The practical applicability of the TcCuPtc@PANI/SPCE was employed for the sensing of 4-NP in different water samples by standard addition method and showed satisfactory recovery results.

Electrochemical Biosensors based on Nanocomposites of Carbon-based Dots

  • Ngo, Yen-Linh Thi;Jana, Jayasmita;Chung, Jin Suk;Hur, Seung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.499-513
    • /
    • 2020
  • Among the many studies of carbon-based nanomaterials, carbon-based dots (CDs) have attracted considerable interest owing to their large surface area, intrinsic low-toxicity, excellent biocompatibility, high solubility, and low-cost with environmentally friendly routes, as well as their ability for modification with other nanomaterials. CDs have several applications in biosensing, photocatalysis, bioimaging, and nanomedicine. In addition, the fascinating electrochemical properties of CDs, including high active surface area, excellent electrical conductivity, electrocatalytic activity, high porosity, and adsorption capability, make them potential candidates for electrochemical sensing materials. This paper reviews the recent developments and synthesis of CDs and their composites for the proposed electrochemical sensing platforms. The electrochemical principles and future perspective and challenges of electrochemical biosensors are also discussed based on CDs-nanocomposites.

Review on CNT-based Electrode Materials for Electrochemical Sensing of Ascorbic Acid

  • P Mary Rajaitha;Runia Jana;Sugato Hajra;Swati Panda;Hoe Joon Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.131-139
    • /
    • 2023
  • Ascorbic acid plays a crucial role in the regulation of neurotransmitters and enzymes in the central nervous system. Maintaining an optimal level of ascorbic acid, which is between 0.6-2 mg/dL, is vital for preventing oxidative stress and associated health conditions, such as cancer, diabetes, and liver disease. Therefore, the detection of ascorbic acid is of the utmost importance. Electrochemical sensing has gained significant attention among the various detection methods, owing to its simplicity, speed, affordability, high selectivity, and real-time analysis capabilities. However, conventional electrodes have poor signal response, which has led to the development of modified electrodes with better signal response and selectivity. Carbon nanotubes (CNTs) and their composites have emerged as promising materials for the electrochemical detection of ascorbic acid. CNTs possess unique mechanical, electrical, and chemical properties that depend on their structure, and their large surface area and excellent electron transport properties make them ideal candidates for electrochemical sensing. Recently, various CNT composites with different materials and nanoparticles have been studied to enhance the electrochemical detection of ascorbic acid. Therefore, this review aims to highlight the significance of CNTs and their composites for improving the sensitivity and selectivity of ascorbic acid detection. Specifically, it focuses on the use of CNTs and their composites in electrochemical sensing to revolutionize the detection of ascorbic acid and contribute to the prevention of oxidative stress-related health conditions. The potential benefits of this technology make it a promising area for future research and development.

Enhancement of Electrocatalytic Activity upon the Addition of Single Wall Carbon Nanotube to the Redox-hydrogel-based Glucose Sensor

  • Kim, Suk-Joon;Quan, Yuzhong;Ha, Eunhyeon;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.33-37
    • /
    • 2021
  • In electrochemical glucose sensing, the enhancement of the sensitivity and the response time is essential in developing stable and reliable sensors, especially for continuous glucose monitoring. We developed a method to increase the sensitivity and to shorten the response time for the sensing upon the appropriate addition of single wall carbon nanotube onto the osmium polymer-based hydrogel electrode. Also, the background stabilization is dramatically enhanced.

Investigation on Electrochemical Property of CNT Fibers and its Non-enzymatic Sensing Performance for Glucose Detection (CNT Fibers의 전기화학적 특성 및 비효소적 글루코스 검출 성능 고찰)

  • Song, Min-Jung
    • Korean Chemical Engineering Research
    • /
    • v.59 no.2
    • /
    • pp.159-164
    • /
    • 2021
  • As the attachable-type wearable devices have received considerable interests, the need for the development of high-performance electrode materials of fabric or textiles type is emerging. In this study, we demonstrated the electrochemical property of CNT fibers electrode as a flexible electrode material and its non-enzymatic glucose sensing performance. Surface morphology of CNT fibers was observed by SEM. And the electrochemical characteristics were investigated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The CNT fibers based sensor exhibited improved sensing performances such as high sensitivity, a wide linear range, and low detection limit due to improved electrochemical properties such as low capacitive current, good electrochemical activity by efficient direct electron transfer between the redox species and the electrode interface. Therefore, this study is expected to be used as a basic research for the development of high performance flexible electrode materials based on CNT fibers.

Portable Amperometric Glucose Detection based on NiS/CuS Nanorods Integrated with a Smartphone Device

  • Heyu Zhao;Kaige Qu;Haoyong Yin;Ling Wang;Yifan Zheng;Shumin Zhao;Shengji Wu
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.252-261
    • /
    • 2023
  • Glucose detection is particularly important for clinical diagnosis and personal prevention and control. Herein, the smartphone-based amperometric glucose sensors were constructed using the NiS/CuS nanorods (NRs) as sensing electrodes. The NiS/CuS NRs were prepared through a facile hydrothermal process accompanied by the subsequent vulcanization treatment. The morphological and structural properties of NiS/CuS NRs were characterized with SEM, EDS, XRD, and XPS. Electrochemical measurements including cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy display that NiS/CuS NRs can act as highly efficient electrocatalyst for glucose detection. The NiS/CuS NRs electrodes present a wide detection range of 1-8000 µM for glucose sensing with the sensitivity of 956.38 µA·mM-1·cm-2. The detection limit was 0.35 µM (S/N=3). When employed in smartphone-based glucose sensing device, they also display a high sensitivity of 738.09 µA·mM-1·cm-2 and low detection limit of 1.67 µM. Moreover, the smartphone-based glucose sensing device also presents favorable feasibility in determination of glucose in serum samples with the recoveries ranging between 99.5 and 105.8%. The results may provide a promising viewpoint to design other new portable glucose sensors.

Glucose Diffusion Limiting Membrane Based on Polyethyleneimine (PEI) Hydrogel for the Stabilization of Glucose Sensor

  • Kim, Suk-Joon;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.225-229
    • /
    • 2021
  • Commercially available continuous glucose sensors require the operation stability for more than two weeks. Typically, the sensor comprises a sensing layer and an over-coating layer for the stable operation inside the body. In the sensing layer, enzymes and mediators are cross-linked together for the effective sensing of the glucose. The over-coating layer limits the flux of glucose and works as a biocompatible layer to the body fluids. Here, we report the simple preparation of the flux-limiting layer by the condensation of polyethyleneimine (PEI), tri-epoxide linker, and trimethylolpropane triglycidyl ether (PTGE). The sensor is constructed by a layer-by-layer drop-coating of the sensing layer containing glucose dehydrogenase and the PEI-derived blocking layer. It is stable for more than 14 days, which is enough for the sensor in the continuous monitor glucose monitoring (CGM) system.

MOF-based Sensing Materials for Non-enzymatic Glucose Sensors

  • Jingjing Liu;Xiaoting Zha;Yajie Yang
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.32-50
    • /
    • 2024
  • Diabetes mellitus is one of the common chronic diseases, seriously threating to human health. The continuous monitoring of blood glucose concentration can effectively prevent diabetic diseases. The sensing performance of glucose non-enzymatic sensors is mainly determined by working electrode materials. Metal-organic frameworks (MOFs) are recognized as promising candidate for glucose sensor application, due to its large surface areas, ordered porous structure and nearly infinite designability. In this review, the sensing performance, research progress and future challenge of non-enzymatic glucose sensors based on MOF-based materials in recent years are presented. We hope that this review would provide valuable technology guidance for high performance non-enzymatic glucose sensors based on MOFs.

Template Synthesis of Nitrogen-Doped Short Tubular Carbons with Big Inner Diameter and their Application in Electrochemical Sensing

  • Cheng, Rui;Zou, Qiong;Zhang, Xiaohua;Xiao, Chunhui;Sun, Longfei;Chen, Jinhua
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2423-2430
    • /
    • 2014
  • Nitrogen-doped short tubular carbons (N-STCs) with big inner diameter have been successfully synthesized via carbonization of polydopamine (PDA) wrapped halloysite nanotubes (HNTs). The obtained N-STCs have average length of $0.3{\mu}m$ with big inner diameter (50 nm), thin wall (2-3 nm) and large surface area ($776m^2g^{-1}$), and show excellent electrochemical properties. As an example in electrochemical applications, N-STCs were used to electrochemically detect hydrogen peroxide ($H_2O_2$) and glucose. The results showed that the N-STCs modified glassy carbon (N-STCs/GC) electrode had much better analytical performance (lower detection limit and wider linear range) compared to the acid-treated carbon nanotubes (AO-CNTs) based GC electrode. The unique structure endows N-STCs the enhanced electrochemical performance and promising applications in electrochemical sensing.

Study on Electrochemical Sensing Property of Harbor Pollutants using Viologen Derivative (Viologen 유도체를 이용한 항만오염물질의 전기화학적 센싱 특성 연구)

  • Park, Sang-Hyun;Lee, Dong-Yun;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.119-120
    • /
    • 2008
  • In this paper, viologen derivative is used as charge transfer material to develop sensors for detecting the organic pollutants which are the main reason of harbor pollution. We fabricated self-assembled monolayers of viologen derivative on gold electrode of QCM and investigated an electrochemical behavior property. We also determined electrochemical sensing property about environmental pollution materials such as bezene, phosphate and surfactant through quantitative and qualitative analysis of charge transfer using intrinsic property of viologen derivative by temperature and concentration change. From the achieved results, we can apply and develope the detecting sensors for harbor pollutants.

  • PDF