• 제목/요약/키워드: electrochemical parameters

검색결과 342건 처리시간 0.033초

Voltammetric Assay of Silver Ions in Frog's Tissue

  • Ly, Suw-Young;Lee, Jin-Hui;Lee, Chang-Hyun
    • 한국응용과학기술학회지
    • /
    • 제30권1호
    • /
    • pp.139-145
    • /
    • 2013
  • The electrochemical analysis of silver ion was performed using cyclic voltammetry (CV) and square-wave (SW) stripping voltammetry, and electrode cell systems were fabricated with graphite pencil electrode (GE) of working, reference and counter electrodes. Also electrolyte was the use of sea water as electrolyte solutions instead of ionic controlled solutions. The optimum analytical conditions for the cyclic and stripping parameters were determined using GE. The results approached the microgram working ranges of SW(ug/L) and CV(ug/L) Ag, and the optimum conditions were applied to frog's tissue and the food samples.

강상에 니켈-아연-인 삼원 합금도금에 관한 속도론적 연구 (A Kinetic Study on the Electrodeposition of Ni-Zn-P Ternary Alloys onto a Steel)

  • 안종관;이응조
    • 한국표면공학회지
    • /
    • 제28권4호
    • /
    • pp.199-206
    • /
    • 1995
  • A kinetic study on the electrodeposition of Ni-Zn-P ternary alloys onto a steel in chloride solutions was carried out using a rotating disc electrode. The coatings were characterized using SEM/EPMA and A. A. analysis. The results showed that the plating rates of three components were increased with applied potential, disc rotating speed and temperature. The activation energies of Ni, Zn and P of the coatings were 6.1, 5.1 and 8.0 kcal/mole respectively. Therefore, the deposition rates were controlled partly by surface electrochemical reaction and partly by mass transport. As the potential, temperature of bath and rotating speed of cathode disc were raised, the vol. % ratios of Ni and P of coating layer were increased but that of Zn decreased. The effect of coating parameters on the surface morphology was also examined.

  • PDF

이식형 혈당 센서의 생리활성 물질에 의한 방해 효과를 제거하기 위한 새로운 효소고정법 개발 (Development of Enzyme Immobilization Method to Remove Interference by Physiological Chemicals for Implantable Glucose Sensors)

  • 정택동;김희찬
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.72-73
    • /
    • 1998
  • A new method for enzyme immobilization has been developed to remove interference by potential interferents in body fluids. Instead of using electron mediators, we chose direct hydrogen peroxide measurement route. Extremely hydrogen peroxide-selective polymer was coated as an inner membrane to exclude interferents and then glucose oxidase(GOx) was entrapped by electropolymerization of inert monomers. There was no solvent casting step throughout the whole fabrication procedure but all membranes on Pt-Ir electrode were formed by electropolymerization. Thus, membrane thickness, quantity of enzyme loaded and can be controlled by electrochemical parameters. As a result, reproducibility of biosensor characteristics becomes remarkably improved in terms of mass production.

  • PDF

직접메탄올 연료전지 모델수립과 해석해 (Analytical Solution of Direct Methanol Fuel Cell Model)

  • 박태현;김인호
    • 청정기술
    • /
    • 제10권2호
    • /
    • pp.53-59
    • /
    • 2004
  • 환경 친화적 대체 에너지로 연료전지가 많이 연구되고 있다. 그 중 높은 에너지밀도와 휴대성 때문에 직접 메탄올 연료전지(DMFC)에 대해 많은 관심을 가지고 연구중에 있다. 그러나 성능을 저하시키는 메탄올 crossover, 음극의 과전압 등과 같은 풀어야 할 문제들이 있다. 본 연구에서는 이러한 문제를 이해하기 위해 전기화학 반응식인 Tafel 식과 한계전류밀도식을 적용하여 전류-전압 곡선식을 해석적으로 구하였다. 운전변수를 변화시켜 해석적 해를 계산하여 DMFC의 거동을 분석하였다.

  • PDF

금속 나노와이어의 제조와 특성 (Metal nano-wire fabrication and properties)

  • 보보무로드 함라쿠로프;김인수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.432-434
    • /
    • 2009
  • Metal nano-wire arrays on Cu-coated seed layers were fabricated by aqueous solution method using sulfate bath at room temperature. The seed layers were coated on Anodic aluminum oxide (AAO) bottom substrates by electrochemical deposition technique, length and diameter of metal nano-wires were dominated by controlling the deposition parameters, such as deposition potential and time, electrolyte temperature. Anodic aluminum oxide (AAO) was used as a template to prepare highly ordered Ni, Fe, Co and Cu multilayer magnetic nano-wire arrays. This template was fabricated with two-step anodizing method, using dissimilar solutions for Al anodizing. The pore of anodic aluminum oxide templates were perfectly hexagonal arranged pore domains. The ordered Ni, Fe, Co and Cu systems nano-wire arrays were characterized by Field Emission Scanning Electron Microscopy (FE-SEM) and Vibrating Sample Magnetometer (VSM). The ordered Ni, Fe, Co and Cu systems nano-wires had different preferred orientation. In addition, these nano-wires showed different magnetization properties under the electrodepositing conditions.

  • PDF

리튬이온전지용 LiMn2O4분말의 자전연소합성시 반응변수의 영향 (Effects of Reaction Parameters on the Preparation of LiMn2O4 for Lithium-Ion Batteries by SHS)

  • 장창현;;원창환;권혁상
    • 한국세라믹학회지
    • /
    • 제43권9호
    • /
    • pp.588-593
    • /
    • 2006
  • Spinel phase $LiMn_2O_4$ is of great interest as cathode materials for lithium-ion batteries. In this study, SHS (Self propagating High-temperature Synthesis) method to synthesize spinel $LiMn_2O_4$ directly from lithium nitrate, manganese oxide, manganese and sodium chloride were investigated. The influence of Li/Mn ratio, the heat-treated condition of product have been explored. The resultant $LiMn_2O_4$ synthesized under the optimum synthesis conditions shows perfect spinel structure, uniform particle size and excellent electrochemical performances.

Extract of Camellia sinensis as Green Inhibitor for the Corrosion of Mild Steel in Aqueous Solution

  • Fouda, Abd El-Aziz S.;Mekkia, Dina;Badr, Abeer H.
    • 대한화학회지
    • /
    • 제57권2호
    • /
    • pp.264-271
    • /
    • 2013
  • Corrosion inhibition of mild steel used in water station in 35 ppm aluminum sulfate and 10 ppm chloride solution by Camellia sinensis leaves extract was studied using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy techniques at $30^{\circ}C$. Results show that the inhibition efficiency increases with increasing concentration of the extract and decreases with increasing temperature. Inhibitive effect was afforded by adsorption of the extract's components which was found to accord with Langmuir adsorption isotherm. Inhibition mechanism is deduced from the temperature dependence of the inhibition efficiency and was further corroborated by the values of activation parameters obtained from the experimental data.

IT-SOFC의 전류밀도 및 온도분포에 관한 수치해석 연구 (A Numerical study on current density and temperature distributions of IT-SOFC)

  • 손상호;이규진;남진현;김찬중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3067-3072
    • /
    • 2008
  • A two-dimensional model for anode-supported IT-SOFCs is proposed in order to accurately consider the heat and mass transport processes with a fully-developed axial velocity profile in channel flow. A comprehensive micro model is employed to describe the electrochemical reaction in anode and cathode of SOFCs. This paper investigates the effects of operational parameters (inlet temperature, the amount of flow rate, and air flow rate) including flow configurations (co-flow and counter-flow) on the current density and temperature distributions in the IT-SOFCs.

  • PDF

Flow-Accelerated Corrosion Behavior of SA106 Gr.C Steel in Alkaline Solution Characterized by Rotating Cylinder Electrode

  • Kim, Jun-Hwan;Kim, In-Sup
    • Nuclear Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.595-604
    • /
    • 2000
  • Flow-Accelerated Corrosion Behavior of SA106 Gr.C steel in room temperature alkaline solution simulating the CANDU primary water condition was studied using Rotating Cylinder Electrode. Systems of RCE were set up and electrochemical parameters were applied at various rotating speeds. Corrosion current density decreased up to pH 10.4 then it increased rapidly at higher pH. This is due to the increasing tendency of cathodic and anodic exchange half-cell current. Corrosion potential shifted slightly upward with rotating velocity. Passive film was formed from pH 9.8 by the mechanism of step oxidation and the subsequent precipitation of ferrous species into hydroxyl compound. Above pH 10.4, the film formation process was active and the film became stable. Corrosion current density showed increment in pH 6.98 with the rotating velocity, while it soon saturated from 1000 rpm above pH 9.8. This seems that activation process which represents formation of passive film on the bare metal surface controls the entire corrosion process

  • PDF

전기-펜톤 공정에 의한 페놀의 전기화학적 분해 (Electrochemical Degradation of Phenol by Electro-Fenton Process)

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제35권3호
    • /
    • pp.201-208
    • /
    • 2009
  • Oxidation of phenol in aqueous media by electro-Fenton process using Ru-Sn-Sb/graphite electrode has been studied. Hydrogen peroxide was electrically generated by reaction of dissolved oxygen in acidic solutions containing supporting electrolyte and $Fe^{2+}$ was added in aqueous media. Phenol degradation experiments were performed in the presence of electrolyte media at pH 3. Effect of operating parameters such as current, electrolyte type (NaCl, KCl and $Na_2SO_4$) and concentration, $Fe^{2+}$ concentration, air flow rate and phenol concentration were investigated to find the best experimental conditions for achieving overall phenol removal. Results showed that current of 2 A, NaCl electrolyte concentration of 2g/l, 0.5M concentration of $Fe^{2+}$, air flow rate of 1l/min were the best conditions for mineralization of the phenol by electro-Fenton.