• Title/Summary/Keyword: electrochemical micro-machining

Search Result 87, Processing Time 0.032 seconds

Optimal Machining Condition of WC-Microshaft Using Electrochemical Machining (텅스텐카바이드 미세축의 전해가공 시 최적가공조건 선정)

  • 최세환;류시형;최덕기;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.245-249
    • /
    • 2002
  • Tungsten carbide microshaft is used as various micro-tools in MEMS because it has high hardness and good rigidity. In this study, experiments were performed to produce tungsten carbide microshaft using electrochemical machining. $H_2SO_4$solution was used as electrolyte because it can dissolve tungsten and cobalt simultaneously. Optimal electrolyte concentration and machining voltage satisfying uniform shape and large MRR of workpiece were found. For one-step machining, the immersion depth over 1 mm was selected for avoidance of concentration of electric charge at the tip of the microshaft. The limit diameter with good straightness was shown and an empirical formula for WC-microshaft machining was suggested. By controlling the various machining parameters, a straight microshaft with 30 $\mu\textrm{m}$ diameter, over 1 mm length and under 0.5$^{\circ}$ taper angle was obtained.

  • PDF

Micro Electrochemical Machining using Anodic Polarization Curve (양극분극곡선을 미용한 미세 전해가공)

  • 최영수;강성일;전종업;박규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.999-1002
    • /
    • 2002
  • In this research, the mechanism of micro-ECM was investigated with potentiodynamic method and the optimal condition for micro-ECM was selected by voltage-current-time curve with potentiostatic method. From the experimental result. it was confirmed that anodic voltage curve could be used very effectively for determining the optimal condition of micro-ECM, and the micro part which has extremely fine surface could be fabricated by use of micro-ECM with point electrode method.

  • PDF

Fabrication of Tungsten Carbide Microshaft Using Electrochemical Machining (전해 가공을 이용한 텅스텐 카바이드 미세축 제작)

  • Kang, Myung-Ju;Oh, Young-Tak;Chu, chong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.80-87
    • /
    • 2002
  • Tungsten carbide microshaft is used as micro-punch, electrode of MEDM (micro-electro-discharge machining), and micro-tool because it has high hardness and high rigidity. In this study, the tungsten carbide microshaft was fabricated using electrochemical machining. Concentration of material removal at the sharp edge and metal corrosion layer affect the shape of the microshaft. Control of microshaft shape was possib1e through conditioning the machining voltage and electrolyte concentration. By applying periodic voltage, material removal rate increased and surface roughness improved. The fabricated microshaft in $H_2 SO_4$ electrolyte maintained sharper end edge and better surface finish than those fabricated by other electrolytes.

Fabrication of Micro Electrodes by Reverse EDM and Its Applications (역방전 가공을 이용한 미세 전극 제작과 그 응용)

  • Choi Se Hwan;Kim Bo Hyun;Park Byung Jin;Chu Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.159-164
    • /
    • 2005
  • For increasing productivity of micro electrochemical machining (MECM), the application of multiple electrodes was introduced. The electrodes were fabricated by reverse electrical discharge machining (REDM). By REDM micro electrodes with various shapes can be machined easily. According to capacitance and applied voltage, machining characteristics of reverse EDM were investigated and the optimal conditions for stable machining were suggested. By using multiple electrodes and a channel-shape electrode, holes and channels were machined on stainless steel by ECM.

WC Micro-shaft Fabrication Using Electrochemical Etching (전해 가공을 이용한 WC 미세축 제작)

  • 최세환;류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.172-178
    • /
    • 2004
  • Tungsten carbide microshaft can be used as various micro-tools for MEMS because it has high hardness and high rigidity. In this study, experiments are performed to produce tungsten carbide micro-shaft using electrochemical etching. H$_2$SO$_4$ solution is used as electrolyte because it can dissolve tungsten and cobalt simultaneously. Optimal electrolyte concentration and machining voltage satisfying uniform shape, good surface quality, and high MRR of workpiece are experimentally found. By controlling the various machining parameters, a straight micro-shaft with 5 ${\mu}{\textrm}{m}$ diameter, 3 mm length, and 0.2$^{\circ}$taper angle was obtained.

Study on the new development of combined electrochemical processes using pulse current (마이크로 펄스 전해 복합가공에 관한 연구)

  • 박정우;이은상;문영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.918-921
    • /
    • 2002
  • Some investigators who have tried to achieve the highly smooth surface finish using electrochemical processes have reported that high current density produced lustrous surfaces while the opposite conditions produced a passive layer and had a tendency to produce a black surface. However, processing at a low current density may produce a non-lustrous surface but the improvement of dimensional accuracy of the surface is significant. The surface with pulse process was a bit more lustrous than with continuous current but the black passive layer still could be found at grooved surface. There are two ways to achieve highly smooth surface finish. One is brushing it with a brush the other is electrochemical machining (ECM) with high current. The former method is the most common polishing practice, but not only may the surface obtained differ from operator to operator, but precision smooth surface on micro grooves are difficult to obtain. The latter one recently has been used to produce a highly smooth surface after EDM process. However, the material removal rate in ECM with high current is relatively high. Hence the original shape of the micro grooves, which was formed by electrochemical micro-machining (EMM) process, may be destroyed. In this study, an electrochemical polishing process using pulse current is adopted as a possible alternative process when micro grooves formed by EMM process should be polished. Mirror-like micro grooves with lustrous and smooth surface can be produced electrochemically with pulse current because the voltage and current used can be lower than the case of continuous current. This study will discuss the accurate control of physical and electrical conditions so as to achieve mirror-like micro grooves with lustrous and smooth surface without destroying the original shape of micro grooves.

  • PDF

A Study on the Micro-machining Technique for Fabrication of Micro Grooves (미세 홈 형성을 위한 마이크로 가공기술에 관한 연구)

  • 박정우;이은상;문영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.918-921
    • /
    • 2000
  • Micro-machining, one of the non-traditional machining techniques, can achieve a wanted shape of the surface using metal dissolution with electrochemical reaction and can be applied to the metal such as high tension, heat resistance and hardened steel. The workpiece dissolves when it is positioned close to the tool electrode in electrolyte and the current is applied. Traditional machining has been used in the industries such as cutting, deburring, drilling and shaping. The aim of this work is to develop Micro-machining techniques for micro shape by establishing appropriate machining parameters of micro-machining

  • PDF

Electrochemical Machining Using Tungsten Microelectrode (텅스텐 미세 전극을 이용한 전해 가공)

  • Ryu, Shi-Hyoung;Yu, Jong-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.134-140
    • /
    • 2009
  • The feasibility of electrochemical drilling and milling on stainless steel are investigated using tungsten microelectrode with $10{\mu}m$ in diameter. For the development of environmentally friendly and safe electrochemical process, citric acid solution is used as electrolyte. A few hundred nanoseconds duration pulses are applied between the microelectrode and work material for dissolution localization. Tool fracture by Joule heating, micro welding, capillary phenomenon, tool wandering by the generated bubbles are observed and their effects on micro ECM are discussed. Occasionally, complex textures including micro pitting corrosion marks appeared on the hole inner surface. Metal growth is also observed under the weak electric conditions and it hinders further dissolutions for workpiece penetration. By adjusting appropriate pulse and chemical conditions, micro holes of $37{\mu}m$ in diameter with $100{\mu}m$ in depth and 26Jim in diameter with $50{\mu}m$ in depth are drilled on stainless steel 304. Also, micro grooves with $18{\mu}m$ width and complex micro hand pattern are machined by electrochemical milling.