• 제목/요약/키워드: electrochemical corrosion

Search Result 1,099, Processing Time 0.024 seconds

Effect of Zinc Addition in Filler Metal on Sacrificial Anode Cathodic Protection of Fin-Tube Aluminum Heat Exchanger

  • Yoon-Sik So;Eun-Ha Park;Jung-Gu Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.349-360
    • /
    • 2023
  • This study investigated the tri-metallic galvanic coupling of different metals in the tubes, fillers, and fins of a heat exchanger. The goal was to prevent corrosion of the tubes using the fin as a sacrificial anode while ensuring that the filler metal has a more noble potential than the fin, to avoid detachment. The metals were arranged in descending order of corrosion potential, with the noblest potential assigned to the tube, followed by the filler metal and the fin. To address a reduction in protection current of the fin, the filler metal was modified by adding Zn to decrease its corrosion potential. However, increasing the Zn content of filler metal also increases its corrosion current. The study examined three different filler metals, considering their corrosion potential, and kinetics. The results suggest that a filler metal with 1.5 wt.% Zn addition is optimal for providing cathodic protection to the tube while reducing the reaction rate of the sacrificial anode.

Investigation on the Recent Research Trend in the Corrosion Behaviour of Stainless Steel Weldment

  • Kim, Hwan Tae;Kil, Sang Cheol;Hwang, Woon Suk
    • Corrosion Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.77-79
    • /
    • 2011
  • The research trend in the corrosion behaviour of stainless steel weldment has been reviewed. The welding technology plays an important role in the fabrication of structure such as chemical plant, power plant, because welding can influence various factors in the performance of plant and equipment. This has led to an increasing attention towards the corrosion behaviour of weldment which has been one of the major issues for both welding and corrosion research engineers. The aim of this paper is to give a short survey of the recent technical trends of welding and corrosion including the electrochemical corrosion, stress corrosion cracking, and corrosion fatigue in connection with the welding materials, welding process, and welding fabrication. This study covers the corrosion behaviour of stainless steel weldment collected from the COMPENDEX DB analysis of published papers, research subject and research institutes.

Galvanic Sensor System for Detecting the Corrosion Damage of the Steel in Concrete

  • Kim, Jung-Gu;Park, Zin-Taek;Yoo, Ji-Hong;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.118-126
    • /
    • 2004
  • The correlation between sensor output and corrosion rate of reinforcing steel was evaluated by laboratory electrochemical tests in saturated $Ca(OH)_2$ with 3.5 wt.% NaCl and confirmed in concrete environment. In this paper, two types of electrochemical probes were developed: galvanic cells containing of steel/copper and steel/stainless steel couples. Potentiodynamic test, weight loss measurement, monitoring of open-circuit potential, linear polarization resistance (LPR) measurement and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of steel bar embedded in concrete. Also, galvanic current measurements were conducted to obtain the charge of sensor embedded in concrete. In this study, steel/copper and steel/stainless steel sensors showed a good correlation in simulated concrete solution between sensor output and corrosion rate of steel bar. However, there was no linear relationship between steel/stainless steel sensor output and corrosion rate of steel bar in concrete environment due to the low galvanic current output. Thus, steel/copper sensor is a reliable corrosion monitoring sensor system which can detect corrosion rate of reinforcing steel in concrete structures.

The Inhibitive Effect of Poly(p-Anisidine) on Corrosion of Iron in 1M HCl Solutions

  • Manivel, P.;Venkatachari, G.
    • Corrosion Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.51-55
    • /
    • 2005
  • The corrosion inhibitive effect of Poly (p-Anisidine) on iron in 1M HCl with various concentrations were studied by using electrochemical methods such as impedance measurements and polarization techniques. The inhibition efficiency (IE) of Poly (p- Anisidine) was compared with its monomer and it was observed that there is a remarkable increase for the polymer. Further, it is found that the value of IE increases with increasing concentrations for both monomer and polymer of p-Anisidine.

A study on the corrosive behaviour of Rolling stock structures by electrochemical experiments (전기화학시험에 의한 부식용액별 구조물의 부식 특성 연구)

  • Oh Chang-Rok;Goo Byeong-Chun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.686-691
    • /
    • 2004
  • The present paper describes an experimental study on the corrosive behaviour of Rolling stock structures. It is important to predict corrosive behaviour of rolling stock structures for safe service and to know relation between corrosion and fatigue life. This paper practiced electrochemical corrosion test of SS400 and SM490A. This study will examine the corrosive properties and differences of SS400 and SM490A from measuring corrosion potential, corrosion current density and corrosion rate.

  • PDF

Role of Some Benzohydrazide Derivatives as Corrosion Inhibitors for Carbon Steel in HCl Solution

  • Fouda, A.S.;Mohamed, M.T.;Soltan, M.R.
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.61-70
    • /
    • 2013
  • Corrosion inhibition of carbon steel in 2M HCl by some benzohydrazide derivatives (I-III) was studied using weight loss, potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS) techniques at $30^{\circ}C$. Polarization studies showed that all the investigated compounds are of mixed type inhibitors. Temperature studies revealed a decrease in efficiency with rise in temperature and corrosion activation energies increased in the presence of the hydrazide derivatives, probably implying that physical adsorption of cationic species may be responsible for the observed inhibition behavior. Electrochemical impedance studies showed that the presence of benzohydrazide derivatives decreases the double layer capacitance and increases the charge transfer resistance. The adsorption of these compounds on carbon steel surface was found to obey Temkin's adsorption isotherm. Synergistic effects increased the inhibition efficiency in the presence of halide additives namely KI and KBr. An inhibition mechanism was proposed in terms of strongly adsorption of inhibitor molecules on carbon steel surface.

Effects of Aluminum and Silicon as Additive Materials for the Zinc Anode in Zn-Air Batteries

  • Lee, Yong-Seok;Ryu, Kwang-Sun
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.1
    • /
    • pp.12-20
    • /
    • 2018
  • To solve low cycle efficiency of the zinc anode in Zn-air batteries by corrosion, this study examined the effects of Al as a cathodic protection additive to Zn. The Al-mixed Zn anodes were produced by mixing Zn and Al powder (1, 2, and 3 wt. %). To compare the effects of the Al additive, Si was selected under the same conditions. The morphology and elemental composition of the additives in the Zn were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and inductively coupled plasma - mass spectrometry. The anti-corrosion effects of the Al and Si-mixed Zn anodes were examined by linear polarization. Cyclic voltammetry and charge-discharge tests were conducted to evaluate the electrochemical performance of the Al and Si-mixed Zn anodes. As a result, the Al-mixed Zn anodes showed highest corrosion resistance and cycling performance. Among these, the 2 wt.% Al-mixed Zn anodes exhibited best electrochemical performance.

Effect of Alloying Elements on the Electrochemical Characteristics of an Al Alloy Electrode for Al-air Batteries in 4 M NaOH solution

  • Choi, Yun-Il;Kalubarme, R.S.;Jang, Hee-Jin;Park, Chan-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.839-844
    • /
    • 2011
  • We examined the effects of alloying elements such as Fe, Ga, In, Sn, Mg, and Mn on the electrochemical characteristics of Al-based alloys for Al-air batteries by potentiodynamic polarization tests and electrochemical impedance spectroscopy. The corrosion potential of an Al anode was lowered by the addition of Ga and Sn, resulting in an increase in the cell voltage compared with a pure Al electrode. Fe was not beneficial to improve the electrochemical properties of the Al anode in that it caused a decrease in the cell voltage and reduced corrosion rate slightly. In, Mn, Sn, and Mg decreased the corrosion rate of the Al alloys, while Ga enhanced corrosion significantly and accelerated consumption of the anode.

Effect of Manufacturing Process on Electrochemical Properties of CP-Ti and Ti-6Al-4V Alloys (CP-Ti 및 Ti-6Al-4V 합금의 전기화학적 특성에 미치는 제조공정의 영향)

  • Kim, K.T.;Cho, H.W.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.20-29
    • /
    • 2018
  • Ti and its alloys show the excellent corrosion resistance to chloride environments, but they show less corrosion resistance in HCl, $H_2SO_4$, NaOH, $H_3PO_4$, and especially HF environments at high temperature and concentration. In this study, we used the commercially pure titanium and Ti-6Al-4V alloy, and evaluated the effect of the manufacturing process on the electrochemical properties. We used commercial products of rolled and forged materials, and made additive manufactured materials by DMT (Directed Metal Tooling) method. We annealed each specimen at $760^{\circ}C$ for one hour and then air cooled. We performed anodic polarization test, AC impedance measurement, and Mott-Schottky plot to evaluate the electrochemical properties. Despite of the difference of its microstructure of CP-Ti and Ti-6Al-4V alloys by the manufacturing process, the anodic polarization behavior was similar in 20% sulfuric acid. However, the addition of 0.1% hydrofluoric acid degraded the electrochemical properties. Among three kinds of the manufacturing process, the electrochemical properties of additive manufactured CP-Ti, and Ti-6Al-4V alloys were the lowest. It is noted that the test materials showed a Warburg impedance in HF acid environments.

Corrosion Behavior of Titanium for Implant in Simulated Body Fluids (인공 체액 조건에서 임플랜트용 티타늄 소재의 부식 특성)

  • 이중배;최기열
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.110-118
    • /
    • 2004
  • The corrosion of pure titanium (CP- Ti Grade 2) and titanium alloy (Ti6Al4V ELI) were studied under various conditions of simulated body fluids. The static immersion test and the electrochemical test were performed in accordance with ISO 10271 : 2001. For the electrochemical test, the open circuit potential was monitored as a function of time, and the cyclic polarization curve was recorded. The corrosion resistance was evaluated from the values of corrosion potential, passivation current density, breakdown potential, and the shape of hysteresis etc. The effects of alloy type, surface condition, temperature, oxygen, and constituents in the fluids such as acid, chloride were estimated. Both specimens had extremely low dissolution rate in the static immersion test. They showed strong passivation characteristics in the electrochemical test. They maintained negligible current density throughout the wide anodic potential range. The passive layer was not broken up to 2.0 V (vs. SCE). The hysteresis and the shift of passivation potential toward the anodic direction was observed during the reversed scan. The passivation process appeared to be accelerated by oxygen in air or that dissolved in the fluids. The passivation also proceeded without oxygen by the reaction of constituents in the fluids. Acid or chloride in the fluids, specially later weakened the passive layer, and then induced higher passivation current density and less shift of passivation potential in the reversed scan. CP-Ti Grade 2 was more reactive than Ti6Al4V ELI in the fluids containing acid or chloride, but thicker layer produced on its surface provided higher corrosion resistance.