• 제목/요약/키워드: electrochemical coating

검색결과 485건 처리시간 0.023초

Electrochemical Properties of LiNi0.8Co0.16Al0.04O2 and Surface Modification with Co3(PO4)2 as Cathode Materials for Lithium Battery

  • Ryu, Kwang-Sun;Lee, Sang-Hyo;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권9호
    • /
    • pp.1737-1741
    • /
    • 2008
  • The electrochemical and thermal stability of $LiNi_{0.8}Co_{0.16}Al_{0.04}O_2$ were studied before and after $Co_3(PO_4)_2$ coating. Different to conventional coating material such as $ZrO_2$ or AlPO4, the coating layer was not detected clearly by TEM analysis, indicating that the $Co_3(PO_4)_2$ nanoparticles effectively reacted with surface impurities such as $Li_2CO_3$. The coated sample showed similar capacity at a low C rate condition. However, the rate capability was significantly improved by the coating effect. It is associated with a decrease of impedance after coating because impedance can act as a major barrier for overall cell performances in high C rate cycling. In the DSC profile of the charged sample, exothermic peaks were shifted to high temperatures and heat generation was reduced after coating, indicating the thermal reaction between electrode and electrolyte was sucessfully suppressed by $Co_3(PO_4)_2$ nanoparticle coating.

Characterization of Ceramic Oxide Layer Produced on Commercial Al Alloy by Plasma Electrolytic Oxidation in Various KOH Concentrations

  • Lee, Jung-Hyung;Kim, Seong-Jong
    • 한국표면공학회지
    • /
    • 제49권2호
    • /
    • pp.119-124
    • /
    • 2016
  • Plasma electrolytic oxidation (PEO) is a promising coating process to produce ceramic oxide on valve metals such as Al, Mg and Ti. The PEO coating is carried out with a dilute alkaline electrolyte solution using a similar technique to conventional anodizing. The coating process involves multiple process parameters which can influence the surface properties of the resultant coating, including power mode, electrolyte solution, substrate, and process time. In this study, ceramic oxide coatings were prepared on commercial Al alloy in electrolytes with different KOH concentrations (0.5 ~ 4 g/L) by plasma electrolytic oxidation. Microstructural and electrochemical characterization were conducted to investigate the effects of electrolyte concentration on the microstructure and electrochemical characteristics of PEO coating. It was revealed that KOH concentration exert a great influence not only on voltage-time responses during PEO process but also on surface morphology of the coating. In the voltage-time response, the dielectric breakdown voltage tended to decrease with increasing KOH concentration, possibly due to difference in solution conductivity. The surface morphology was pancake-like with lower KOH concentration, while a mixed form of reticulate and pancake structures was observed for higher KOH concentration. The KOH concentration was found to have little effect on the electrochemical characteristics of coating, although PEO treatment improved the corrosion resistance of the substrate material significantly.

활성탄소 전극의 제조공정에 따른 EDLC의 전기화학적 특성 (Electrochemical Characteristics of EDLC Fabricated by Different Preparation Processes of Activated Carbon Electrode)

  • 양천모;김현중;조원일;조병원;윤경석;임병오
    • 전기화학회지
    • /
    • 제4권3호
    • /
    • pp.98-103
    • /
    • 2001
  • EDLC(electric double layer capacitor)용 활성탄소전극의 제조공정을 dip coating method, doctor blade coating method, paste rolling method로 달리하여 전기화학적 특성과 비축전 용량을 조사하였다. Dip coating method에 의한 전극제조시 전해질염으로 LiPF6를 이용하고 유기용매로 PC-DEC를 이용한 EDLC의 비축전 용량이 130F/g으로 가장 우수하였고, 선형의 시간전압곡선에서의 IR-drop도 0.11V로 작았으며 CV(cyclic voltammetry) 분석 또한 이상적인 EDLC의 특성을 나타내었다.

Electrochemical Performance of Carbon Coated LiMn2O4 Nanoparticles using a New Carbon Source

  • Park, Jin Seo;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권2호
    • /
    • pp.139-145
    • /
    • 2016
  • The electrochemical performance of carbon-coated LiMn2O4 nanoparticles was reported. The polydopamine layer was introduced as a new organic carbon source. The carbon layer was homogeneously coated onto the surface of the LiMn2O4 nanoparticles because the polymerization process from the dopamine solution (in a buffer solution, pH 8.5) easily and uniformly formed a polydopamine layer. The phase integrity of LiMn2O4 deteriorated during the carbon-coating process due to oxygen loss, although the main structure was maintained. The carbon-coated sample led to improved rate capability because of the effect of the conductive carbon layer. Moreover, the carbon coating also enhanced the cyclic performance. This indicates that the carbon layer may suppress unwanted side reactions with the electrolytes and compensate for the low electronic conductivity of the pristine LiMn2O4.

Effect of Hydrodynamic Condition on the Electrochemical Behavior of Various Metals in 3.5 wt% NaCl Solution

  • Pan, Szu-Jung;Hadinata, Samuel-Sudibyo;Kao, Ruey-Chy;Tsai, Wen-Ta
    • Corrosion Science and Technology
    • /
    • 제14권5호
    • /
    • pp.218-225
    • /
    • 2015
  • The electrochemical behaviors of various metals with and without diamond-like-carbon (DLC) coating in 3.5 wt% NaCl solution were investigated. The effect of hydrodynamic conditions was focused by employing a rotating disc electrode (RDE). The experimental results showed that each bare metal had a more positive corrosion potential and a higher corrosion rate due to enhanced oxygen transport at the higher rotating speed of the RDE. DLC coating caused a substantial increase in the corrosion resistance of all metals studied. However, localized corrosion was still found in the DLC-coated metal at sites where deposition defects existed. Surface morphology examination was performed after the electrochemical test to confirm the roles of hydrodynamic conditions and DLC coating.

미세 레이저 가공의 표면코팅 후 전해 에칭 (Laser Micro Machining and Electrochemical Etching After Surface Coating)

  • 김태풍;박민수
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.638-643
    • /
    • 2013
  • Laser beam machining (LBM) is fast, contactless and able to machine various materials. So it is used to cut metal, drill holes, weld or pattern the imprinted surface. However, after LBM, there still leave burrs and recast layers around the machined area. In order to remove these unwanted parts, LBM process often uses electrochemical etching (ECE). But, the total thickness of workpiece is reduced because the etching process removes not only burrs and recast layers, but also the entire surface. In this paper, surface coating was performed using enamel after LBM on metal. The recast layer can be selectively removed without decreasing total thickness. Comparing with LBM process only, the surface quality of enamel coating process was better than that. And edge shape was also maintained after ECE.

A Novel Under-film Corrosion Tester Using Current Interrupter Technique

  • Tanabe, Hiroyuki;Taki, Tohru;Nagai, Masanori;Ogawa, Osamu
    • Corrosion Science and Technology
    • /
    • 제3권6호
    • /
    • pp.240-244
    • /
    • 2004
  • Recently a variety of electrochemical techniques have been used for the measurement of under-film corrosion of coated steel. Each method has its own characteristic and is suitable to determine some kinds of anti-corrosive mechanisms of coating film. We developed a new under-film corrosion tester (UFCT) which adoped current interrupter technique in principle. Electrochemical parameters can be measured by UFCT. It is possible for the novel under-film corrosion tester to evaluate under-film corrosion of steel covered with high electric resistance coating film which has no defect and is not easy to evaluate it by other methods. Finally some experimental results of protective coating performance obtained by UFCT were discussed.

Li Ion Diffusivity and Improved Electrochemical Performances of the Carbon Coated LiFePO4

  • Park, Chang-Kyoo;Park, Sung-Bin;Oh, Si-Hyung;Jang, Ho;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.836-840
    • /
    • 2011
  • This study examines the effects of a carbon coating on the electrochemical performances of $LiFePO_4$. The results show that the capacity of bare $LiFePO_4$ decreased sharply, whereas the $LiFePO_4$/C shows a well maintained initial capacity. The Li ion diffusivity of the bare and carbon coated $LiFePO_4$ is calculated using cyclic voltammetry (CV) to determine the correlation between the electrochemical performance of $LiFePO_4$ and Li diffusion. The diffusion constants for $LiFePO_4$ and $LiFePO_4$/C measured from CV are $6.56{\times}10^{-16}$ and $2.48{\times}10^{-15}\;cm^2\;s^{-1}$, respectively, indicating considerable increases in diffusivity after modifications. The Li ion diffusivity (DLi) values as a function of the lithium content in the cathode are estimated by electrochemical impedance spectroscopy (EIS). The effects of the carbon coating as well as the mechanisms for the improved electrochemical performances after modification are discussed based on the diffusivity data.

Zn, PTFE 복합 코팅에 의한 SS400 강의 해수 부식 특성 변화 연구 (Investigation of Corrosion Characteristics with Zn, PTFE Hybrid Coating for SS400 in Sea Water)

  • 한민수;박재철;장석기;김성종
    • Corrosion Science and Technology
    • /
    • 제10권6호
    • /
    • pp.205-211
    • /
    • 2011
  • The severe corrosion environment makes the steel product lifecycle short while Cu-alloys with anti-corrosion characteristic used in sea water are too expensive. This study shows that the Cu-alloy(Cu-37.25% Zn-0.67%Al) used in sea water environment can be superseded by SS400 with various coating process, evaluating electrochemical characteristics. Three coating processes were applied to SS400 such as PTFE + Zn coaing, Zn + PTFE coating and only Zn electrogalvanizing coaing. Various electrochemical experiments such as open circuit potential measurments, potentiodynamic polarization tests and analyses of Tafel constants. Mechanical properties were also measured by tensile test and hardness tests. As a result, Zn + PTFE coating for SS400 steel presented the excellent anti-corrosion characteristic in sea water.

해수 내 아크 아연 용사코팅 층의 전기화학적 특성 (Electrochemical Characteristics of Arc Zn Thermal Spray Coating Layer in Sea Water)

  • 박일초;서광철;이경우;김성종
    • 한국표면공학회지
    • /
    • 제48권6호
    • /
    • pp.343-348
    • /
    • 2015
  • In this paper, arc Zn thermal spray coating was carried out on the SS400 steel, and then various electrochemical characteristics and surface damage behavior of Zn thermal spray coating layer were analyzed. As the results, the potential of Zn thermal spray coating layer presented driving voltage above 300 mV compare to that of SS400 steel. The passivity characteristic in anodic polarization curve was not presented. It was adequate to as sacrificial anode material. In the surface damage after galvanostatic experiments, uniform corrosion tendency of Zn thermal spray coating layer was clearly observed with acceleration of the dissolution reaction. In conclusion, Zn thermal spray coating could be determined to represent the corrosion protection effect by stable sacrificial anodic cathodic protection method in seawater because it had sufficient driving voltage and uniform corrosion damage tendency for the SS400 steel.